Resolva a equação: sen (7x - π/4) = 0
Soluções para a tarefa
Respondido por
1
Quando o seno vale zero? quando temos 180°, 360°...
Portanto é só igualar 7x - π/4 = kπ
para k = 1, temos que
7x - π/4 = π
7x = π/4 + π
7x = 5π/4
x = 5π/28 em radianos
em graus temos que x = 32,14°
Portanto é só igualar 7x - π/4 = kπ
para k = 1, temos que
7x - π/4 = π
7x = π/4 + π
7x = 5π/4
x = 5π/28 em radianos
em graus temos que x = 32,14°
l1sly:
De onde veio o 28?
Respondido por
1
Quais ângulos tem seno igual a zero em radianos?
(0 + 2kπ) e (π + 2kπ)
Portanto:
7x - π/4 = 2kπ
7x = 2kπ + π/4
x = (8kπ + π)/28
ou
7x - π/4 = π + 2kπ
7x = π + π/4 + 2kπ
x = (8kπ + 5π)/28
S = {x∈R / x = π(8k+1)/28 ou x = π(8k+5)/28, k∈Z}
(0 + 2kπ) e (π + 2kπ)
Portanto:
7x - π/4 = 2kπ
7x = 2kπ + π/4
x = (8kπ + π)/28
ou
7x - π/4 = π + 2kπ
7x = π + π/4 + 2kπ
x = (8kπ + 5π)/28
S = {x∈R / x = π(8k+1)/28 ou x = π(8k+5)/28, k∈Z}
Perguntas interessantes