Resolva a equação: C n,3 = 2.C n,2 Combinação simples.
Soluções para a tarefa
Respondido por
1
Ae Mano,
dada a combinação![\mathsf{C_{n,p}= \dfrac{n!}{p!(n-p)!} } \mathsf{C_{n,p}= \dfrac{n!}{p!(n-p)!} }](https://tex.z-dn.net/?f=%5Cmathsf%7BC_%7Bn%2Cp%7D%3D+%5Cdfrac%7Bn%21%7D%7Bp%21%28n-p%29%21%7D+%7D)
aplique o conceito de fatorial usado em combinação simples, para a equação abaixo:
![\mathsf{ \dfrac{n!}{3!(n-3)!}=2\cdot \left[\dfrac{n!}{2!(n-2)}\right] }\\\\\\
\mathsf{ \dfrac{n(n-1)(n-2)(n-3)!}{3!(n-3)!} =2\cdot\left[ \dfrac{n(n-1)(n-2)!}{2!(n-2)!}\right] }\\\\\\
\mathsf{ \dfrac{(n^2-n)(n-2)}{3}=2\cdot\left[ \dfrac{n^2-n}{2} \right] }\\\\\\
\mathsf{ \dfrac{(n^2-n)(n-2)}{3}=\not2\cdot\left[ \dfrac{n^2-n}{\not2} \right] }\\\\\\
\mathsf{ \dfrac{(n^2-n)(n-2)}{3}=n^2-n} \mathsf{ \dfrac{n!}{3!(n-3)!}=2\cdot \left[\dfrac{n!}{2!(n-2)}\right] }\\\\\\
\mathsf{ \dfrac{n(n-1)(n-2)(n-3)!}{3!(n-3)!} =2\cdot\left[ \dfrac{n(n-1)(n-2)!}{2!(n-2)!}\right] }\\\\\\
\mathsf{ \dfrac{(n^2-n)(n-2)}{3}=2\cdot\left[ \dfrac{n^2-n}{2} \right] }\\\\\\
\mathsf{ \dfrac{(n^2-n)(n-2)}{3}=\not2\cdot\left[ \dfrac{n^2-n}{\not2} \right] }\\\\\\
\mathsf{ \dfrac{(n^2-n)(n-2)}{3}=n^2-n}](https://tex.z-dn.net/?f=%5Cmathsf%7B+%5Cdfrac%7Bn%21%7D%7B3%21%28n-3%29%21%7D%3D2%5Ccdot+%5Cleft%5B%5Cdfrac%7Bn%21%7D%7B2%21%28n-2%29%7D%5Cright%5D++%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7Bn%28n-1%29%28n-2%29%28n-3%29%21%7D%7B3%21%28n-3%29%21%7D+%3D2%5Ccdot%5Cleft%5B+%5Cdfrac%7Bn%28n-1%29%28n-2%29%21%7D%7B2%21%28n-2%29%21%7D%5Cright%5D+%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7B%28n%5E2-n%29%28n-2%29%7D%7B3%7D%3D2%5Ccdot%5Cleft%5B+%5Cdfrac%7Bn%5E2-n%7D%7B2%7D+%5Cright%5D+%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7B%28n%5E2-n%29%28n-2%29%7D%7B3%7D%3D%5Cnot2%5Ccdot%5Cleft%5B+%5Cdfrac%7Bn%5E2-n%7D%7B%5Cnot2%7D+%5Cright%5D+%7D%5C%5C%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7B%28n%5E2-n%29%28n-2%29%7D%7B3%7D%3Dn%5E2-n%7D)
![\mathsf{(\not n^2-\not n)(n-2)=3\cdot(\not n^2-\not n)}\\
\mathsf{n-2=3}\\
\mathsf{n=3+2}\\\\
\huge\boxed{\mathsf{n=5}}
\mathsf{(\not n^2-\not n)(n-2)=3\cdot(\not n^2-\not n)}\\
\mathsf{n-2=3}\\
\mathsf{n=3+2}\\\\
\huge\boxed{\mathsf{n=5}}](https://tex.z-dn.net/?f=%5Cmathsf%7B%28%5Cnot+n%5E2-%5Cnot+n%29%28n-2%29%3D3%5Ccdot%28%5Cnot+n%5E2-%5Cnot+n%29%7D%5C%5C%0A%5Cmathsf%7Bn-2%3D3%7D%5C%5C%0A%5Cmathsf%7Bn%3D3%2B2%7D%5C%5C%5C%5C%0A%5Chuge%5Cboxed%7B%5Cmathsf%7Bn%3D5%7D%7D%0A)
Tenha ótimos estudos ;D
dada a combinação
aplique o conceito de fatorial usado em combinação simples, para a equação abaixo:
Tenha ótimos estudos ;D
Supletiv0:
Muito grato! :)
Perguntas interessantes
História,
11 meses atrás
Matemática,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
1 ano atrás