Resolva a equação biquadrada >>>
Soluções para a tarefa
Boa tarde,como vai?
Aqui está:
Você vai resolver essa equação usando substitução
x⁴-13x²+36=0
Agora você vai resolver a equação
t²-13t+36=0
Agora,substitua
t=4
t=9
Resolva as equações
x²=4
x²=9
Bom,a equação tem 4 soluções
x=-2
x=2
x=-3
x=3
Pronto,a solução,está logo abaixo:
x₁=-3,x₂=-2,x₃=2,x₄=3
Demorei, mas consegui,abraços!
Olá, boa tarde.
Para resolvermos esta questão, devemos lembrar de algumas propriedades estudadas sobre equações algébricas.
Devemos resolver a seguinte equação biquadrada:
Observe que podemos reescrever a equação da seguinte forma:
Para resolver uma equação quadrática de coeficientes reais , utilizamos a fórmula resolutiva: .
Substituindo o valor dos coeficientes e , teremos:
Calcule a potência, multiplique e some os valores
Calcule o radical, sabendo que
Separe as soluções, some os valores e simplifique as frações
Então, calcule a raiz quadrada de ambos os lados das igualdades
Calcule os radicais, sabendo que e
Dessa forma, o conjunto solução desta equação biquadrada é: