Matemática, perguntado por thaisferreamiga, 5 meses atrás

resolva a equação 81 x+1=(1\3)x2 (2x)x=(1\4)x

Soluções para a tarefa

Respondido por auditsys
2

Resposta:

\textsf{Leia abaixo}

Explicação passo a passo:

\mathsf{81^{x + 1} = \left(\dfrac{1}{3}\right)^{x^2}}

\mathsf{(3^4)^{x + 1} = (3^{-1})^{x^2}}

\mathsf{3^{4x + 4} = 3^{-x^2}}

\mathsf{x^2 + 4x + 4 = 0}

\mathsf{(x + 2)^2 = 0}

\mathsf{x + 2 = 0}

\boxed{\boxed{\mathsf{x = -2}}}

\mathsf{(2^x)^x = \left(\dfrac{1}{4}\right)^{x}}

\mathsf{2x^2 = \dfrac{1}{4}}

\mathsf{x^2 = \dfrac{1}{8}}

\mathsf{x = \pm\: \dfrac{\sqrt{1}}{\sqrt{8}}}

\mathsf{x = \pm\: \dfrac{\sqrt{1}}{\sqrt{2^2.2}}}

\mathsf{x = \pm\: \dfrac{1}{2\sqrt{2}}}

\mathsf{x = \pm\: \dfrac{1}{2\sqrt{2}}\:.\:\dfrac{\sqrt{2}}{\sqrt{2}}}

\boxed{\boxed{\mathsf{x = \pm\: \dfrac{\sqrt{2}}{4}}}}

Perguntas interessantes