Resolva a Equação 3+8+13+ ... + x = 1575, sabendo que as parcelas do primeiro membro formam uma PA.
Gente me ajuda por favooor
Soluções para a tarefa
Respondido por
5
Olá Luciana,
os dados são:
![\begin{cases}\mathsf{a_1=3}\\
\mathsf{r=(a_2-a_1)=8-3=5}\\
\mathsf{a_n=x}\\
\mathsf{S_n=1.575}\end{cases} \begin{cases}\mathsf{a_1=3}\\
\mathsf{r=(a_2-a_1)=8-3=5}\\
\mathsf{a_n=x}\\
\mathsf{S_n=1.575}\end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%5Cmathsf%7Ba_1%3D3%7D%5C%5C%0A%5Cmathsf%7Br%3D%28a_2-a_1%29%3D8-3%3D5%7D%5C%5C%0A%5Cmathsf%7Ba_n%3Dx%7D%5C%5C%0A%5Cmathsf%7BS_n%3D1.575%7D%5Cend%7Bcases%7D)
Vamos recorrer à fórmula do termo geral da P.A.:
![\mathsf{a_n=a_1+(n-1)r}\\
\mathsf{x=3+(n-1)\cdot5}\\
\mathsf{x=3+5n-5}\\
\mathsf{x=5n-2}\\
\mathsf{5n=x+2}\\\\
\mathsf{n= \dfrac{x+2}{5} } \mathsf{a_n=a_1+(n-1)r}\\
\mathsf{x=3+(n-1)\cdot5}\\
\mathsf{x=3+5n-5}\\
\mathsf{x=5n-2}\\
\mathsf{5n=x+2}\\\\
\mathsf{n= \dfrac{x+2}{5} }](https://tex.z-dn.net/?f=%5Cmathsf%7Ba_n%3Da_1%2B%28n-1%29r%7D%5C%5C%0A%5Cmathsf%7Bx%3D3%2B%28n-1%29%5Ccdot5%7D%5C%5C%0A%5Cmathsf%7Bx%3D3%2B5n-5%7D%5C%5C%0A%5Cmathsf%7Bx%3D5n-2%7D%5C%5C%0A%5Cmathsf%7B5n%3Dx%2B2%7D%5C%5C%5C%5C%0A%5Cmathsf%7Bn%3D+%5Cdfrac%7Bx%2B2%7D%7B5%7D+%7D)
Agora à fórmula da soma dos n primeiros termos da soma da P.A.:
![\mathsf{S_n= \dfrac{(a_1+a_n)n}{2} }\\\\
\mathsf{ \dfrac{(3+x)\cdot\left( \dfrac{x+2}{5} \right)}{2}=1.575 }\\\\
\mathsf{ \left(\dfrac{x+2}{5}\right)\cdot(x+3)= 3.150}\\\\
\mathsf{ \dfrac{x^2+3x+2x+6}{5}=3.150 }\\\\
\mathsf{x^2+5x+6=15.750}\\
\mathsf{x^2+5x-15.744=0\to(EQ.~DO~2^o~GRAU)}\\\\
\mathsf{S_n= \dfrac{(a_1+a_n)n}{2} }\\\\
\mathsf{ \dfrac{(3+x)\cdot\left( \dfrac{x+2}{5} \right)}{2}=1.575 }\\\\
\mathsf{ \left(\dfrac{x+2}{5}\right)\cdot(x+3)= 3.150}\\\\
\mathsf{ \dfrac{x^2+3x+2x+6}{5}=3.150 }\\\\
\mathsf{x^2+5x+6=15.750}\\
\mathsf{x^2+5x-15.744=0\to(EQ.~DO~2^o~GRAU)}\\\\](https://tex.z-dn.net/?f=%5Cmathsf%7BS_n%3D+%5Cdfrac%7B%28a_1%2Ba_n%29n%7D%7B2%7D+%7D%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7B%283%2Bx%29%5Ccdot%5Cleft%28+%5Cdfrac%7Bx%2B2%7D%7B5%7D+%5Cright%29%7D%7B2%7D%3D1.575+%7D%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cleft%28%5Cdfrac%7Bx%2B2%7D%7B5%7D%5Cright%29%5Ccdot%28x%2B3%29%3D+3.150%7D%5C%5C%5C%5C%0A%5Cmathsf%7B+%5Cdfrac%7Bx%5E2%2B3x%2B2x%2B6%7D%7B5%7D%3D3.150+%7D%5C%5C%5C%5C%0A%5Cmathsf%7Bx%5E2%2B5x%2B6%3D15.750%7D%5C%5C%0A%5Cmathsf%7Bx%5E2%2B5x-15.744%3D0%5Cto%28EQ.%7EDO%7E2%5Eo%7EGRAU%29%7D%5C%5C%5C%5C%0A)
![\mathsf{\Delta=5^2-4\cdot1\cdot(-15.744)}\\
\mathsf{\Delta=25+62.976}\\
\mathsf{\Delta=63.001}\\\\
\mathsf{x= \dfrac{-5\pm \sqrt{63.001} }{2\cdot1} = \dfrac{-5\pm251}{2} }\begin{cases}\mathsf{x_1=123}\\
\mathsf{x_2=-128}\end{cases} \mathsf{\Delta=5^2-4\cdot1\cdot(-15.744)}\\
\mathsf{\Delta=25+62.976}\\
\mathsf{\Delta=63.001}\\\\
\mathsf{x= \dfrac{-5\pm \sqrt{63.001} }{2\cdot1} = \dfrac{-5\pm251}{2} }\begin{cases}\mathsf{x_1=123}\\
\mathsf{x_2=-128}\end{cases}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5CDelta%3D5%5E2-4%5Ccdot1%5Ccdot%28-15.744%29%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D25%2B62.976%7D%5C%5C%0A%5Cmathsf%7B%5CDelta%3D63.001%7D%5C%5C%5C%5C%0A%5Cmathsf%7Bx%3D+%5Cdfrac%7B-5%5Cpm+%5Csqrt%7B63.001%7D+%7D%7B2%5Ccdot1%7D+%3D+%5Cdfrac%7B-5%5Cpm251%7D%7B2%7D+%7D%5Cbegin%7Bcases%7D%5Cmathsf%7Bx_1%3D123%7D%5C%5C%0A%5Cmathsf%7Bx_2%3D-128%7D%5Cend%7Bcases%7D)
Como a progressão aritmética acima é crescente, temos que:
![\huge\boxed{\mathsf{x=123}} \huge\boxed{\mathsf{x=123}}](https://tex.z-dn.net/?f=%5Chuge%5Cboxed%7B%5Cmathsf%7Bx%3D123%7D%7D)
Tenha ótimos estudos ;P
os dados são:
Vamos recorrer à fórmula do termo geral da P.A.:
Agora à fórmula da soma dos n primeiros termos da soma da P.A.:
Como a progressão aritmética acima é crescente, temos que:
Tenha ótimos estudos ;P
Perguntas interessantes
Matemática,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás