Matemática, perguntado por roqueketlyn, 4 meses atrás

represente os números decimais na forma de fração A) 0,36 B)1,32 C)2,4 D)0,05 E)0,076​

Soluções para a tarefa

Respondido por GeBEfte
1

a)

\sf 0,36~=~\dfrac{0,36}{1}\\\\\\Multiplicar~numerador~e~denominador~por~10~at\acute{e}~que~a~v\acute{i}rgula~esteja\\\grave{a}~direita~do~\acute{u}ltimo~algarismo:\\\\\\\sf 0,36~=~\dfrac{0,36~\times10}{1\times10}\\\\\\\sf 0,36~=~\dfrac{3,6\times10}{10\times10}\\\\\\\boxed{\sf 0,36~=~\dfrac{36}{100}}

\sf Podemos~agora~simplificar~a~frac\tilde{a}o\\\\\\\sf 0,36~=~\dfrac{36\div2}{100\div2}\\\\\\\sf 0,36~=~\dfrac{18\div2}{50\div2}\\\\\\\boxed{\sf 0,36~=~\dfrac{9}{25}}~~\Rightarrow~Resposta

b)

\sf 1,32~=~\dfrac{1,32}{1}\\\\\\Multiplicar~numerador~e~denominador~por~10~at\acute{e}~que~a~v\acute{i}rgula~esteja\\\grave{a}~direita~do~\acute{u}ltimo~algarismo:\\\\\\\sf 1,32~=~\dfrac{1,32~\times10}{1\times10}\\\\\\\sf 1,32~=~\dfrac{13,2\times10}{10\times10}\\\\\\\boxed{\sf 1,32~=~\dfrac{132}{100}}

\sf Podemos~agora~simplificar~a~frac\tilde{a}o\\\\\\\sf 1,32~=~\dfrac{132\div2}{100\div2}\\\\\\\sf 1,32~=~\dfrac{66\div2}{50\div2}\\\\\\\boxed{\sf 1,32~=~\dfrac{33}{25}}~~\Rightarrow~Resposta

c)

\sf 2,4~=~\dfrac{2,4}{1}\\\\\\Multiplicar~numerador~e~denominador~por~10~at\acute{e}~que~a~v\acute{i}rgula~esteja\\\grave{a}~direita~do~\acute{u}ltimo~algarismo:\\\\\\\sf 2,4~=~\dfrac{2,4~\times10}{1\times10}\\\\\\\boxed{\sf 2,4~=~\dfrac{24}{10}}

\sf Podemos~agora~simplificar~a~frac\tilde{a}o\\\\\\\sf 2,4~=~\dfrac{24\div2}{10\div2}\\\\\\\boxed{\sf 2,4~=~\dfrac{12}{5}}~\Rightarrow~Resposta

d)

\sf 0,05~=~\dfrac{0,05}{1}\\\\\\Multiplicar~numerador~e~denominador~por~10~at\acute{e}~que~a~v\acute{i}rgula~esteja\\\grave{a}~direita~do~\acute{u}ltimo~algarismo:\\\\\\\sf 0,05~=~\dfrac{0,05~\times10}{1\times10}\\\\\\\sf 0,05~=~\dfrac{0,5\times10}{10\times10}\\\\\\\boxed{\sf 0,05~=~\dfrac{5}{100}}

\sf Podemos~agora~simplificar~a~frac\tilde{a}o\\\\\\\sf 0,05~=~\dfrac{5\div5}{100\div5}\\\\\\\boxed{\sf 0,05~=~\dfrac{1}{20}}~\Rightarrow~Resposta

e)

\sf 0,076~=~\dfrac{0,076}{1}\\\\\\Multiplicar~numerador~e~denominador~por~10~at\acute{e}~que~a~v\acute{i}rgula~esteja\\\grave{a}~direita~do~\acute{u}ltimo~algarismo:\\\\\\\sf 0,076~=~\dfrac{0,076~\times10}{1\times10}\\\\\\\sf 0,076~=~\dfrac{0,76\times10}{10\times10}\\\\\\\sf 0,076~=~\dfrac{7,6\times10}{100\times10}\\\\\\\boxed{\sf 0,076~=~\dfrac{76}{1000}}

\sf Podemos~agora~simplificar~a~frac\tilde{a}o\\\\\\\sf 0,076~=~\dfrac{76\div2}{1000\div2}\\\\\\\sf 0,076~=~\dfrac{38\div2}{500\div2}\\\\\\\boxed{\sf 0,076~=~\dfrac{19}{250}}~~\Rightarrow~Resposta

\Huge{\begin{array}{c}\Delta \tt{\!\!\!\!\!\!\,\,o}\!\!\!\!\!\!\!\!\:\,\perp\end{array}}Qualquer~d\acute{u}vida,~deixe~ um~coment\acute{a}rio

Perguntas interessantes