Matemática, perguntado por irene70, 1 ano atrás

regra para equação do 1 grau

Soluções para a tarefa

Respondido por LarissaSampaio28
0
 Função de 1º grau

  Definição

 Chama-se função polinomial do 1º grau, ou função afim, a qualquer função f de IR em IR dada por uma lei da forma f(x) = ax + b, onde a e b são números reais dados e a0.

 Na função f(x) = ax + b, o número a é chamado de coeficiente de x e o número b é chamado termo constante.

 Veja alguns exemplos de funções polinomiais do 1º grau:

 f(x) = 5x - 3, onde a = 5 e b = - 3
 f(x) = -2x - 7, onde a = -2 e b = - 7
 f(x) = 11x, onde a = 11 e b = 0

 

Gráfico

    O gráfico de uma função polinomial do 1º grau,  y = ax+ b, com a0, é uma reta oblíqua aos eixos Ox e Oy.

    Exemplo:

    Vamos construir o gráfico da função y = 3x - 1:
    Como o gráfico é uma reta, basta obter dois de seus pontos e ligá-los com o auxílio de uma régua:

    a)    Para   x = 0, temos   y = 3 · 0 - 1 = -1; portanto, um ponto é (0, -1).
    b)    Para   y = 0, temos   0 = 3x - 1; portanto,  e outro ponto é .

    Marcamos os pontos (0, -1) e  no plano cartesiano e ligamos os dois com uma reta.

xy0-10



    Já vimos que o gráfico da função afim y = ax + b é uma reta.
    O coeficiente de x, a, é chamado coeficiente angular da reta e, como veremos adiante, a está ligado à inclinação da reta em relação ao eixo Ox.

    O termo constante, b, é chamado coeficiente linear da reta. Para x = 0, temos y = a · 0 + b = b. Assim, o coeficiente linear é a ordenada do ponto em que a reta corta o eixo Oy.

Perguntas interessantes