Matemática, perguntado por adribetania, 10 meses atrás

Reduza os termos semelhante de cada expressão

b) 3xy/4-xz/2+xy/3-xz

e) x²-{[x-2y+x²-(x-2y)]-y}


Soluções para a tarefa

Respondido por ShinyComet
2

b)     \frac{3xy}{4}-\frac{xz}{2}+\frac{xy}{3}-xz=

   =\frac{3xy\times 3}{4\times 3}-\frac{xz\times 6}{2\times 6}+\frac{xy\times 4}{3\times 4}-\frac{xz\times 12}{12}=

   =\frac{9xy}{12}-\frac{6xz}{12}+\frac{4xy}{12}-\frac{12xz}{12}=

   =\frac{9xy}{12}+\frac{4xy}{12}-\frac{6xz}{12}-\frac{12xz}{12}=

   =\frac{9xy}{12}+\frac{4xy}{12}+\frac{-6xz}{12}+\frac{-12xz}{12}=

   =\frac{9xy+4xy}{12}+\frac{-6xz-12xz}{12}=

   =\frac{13xy}{12}+\frac{-18xz}{12}=

   =\frac{13xy}{12}-\frac{18xz}{12}=

   =\frac{13xy}{12}-\frac{3xz}{2}

e)     x^{2}-[(x-2y+x^{2}-(x-2y))-y]=

   =x^{2}-[(x-2y+x^{2}-x+2y)-y]=

   =x^{2}-(x-2y+x^{2}-x+2y-y)=

   =x^{2}-(x^{2}-x+x+2y-2y-y)=

   =x^{2}-(x^{2}-y)=

   =x^{2}-x^{2}+y=

   =y


ShinyComet: Obrigado pela "Melhor Resposta" <3
Perguntas interessantes