RAÍZES! PF ME AJUDA
10 PONTOS
3. Responda por meio de um UNICO radical.
COM CÁLCULOS PFFF
a)
![\sqrt[6]{ \sqrt{22} } \sqrt[6]{ \sqrt{22} }](https://tex.z-dn.net/?f=+%5Csqrt%5B6%5D%7B+%5Csqrt%7B22%7D+%7D+)
b)
![( \sqrt[8]{7} ) {}^{2} ( \sqrt[8]{7} ) {}^{2}](https://tex.z-dn.net/?f=%28+%5Csqrt%5B8%5D%7B7%7D+%29+%7B%7D%5E%7B2%7D+)
c)
![\sqrt[6]{ \frac{5}{6} } \times \sqrt[6]{12} \sqrt[6]{ \frac{5}{6} } \times \sqrt[6]{12}](https://tex.z-dn.net/?f=+%5Csqrt%5B6%5D%7B+%5Cfrac%7B5%7D%7B6%7D+%7D+%5Ctimes+%5Csqrt%5B6%5D%7B12%7D+)
d)
![\sqrt[4]{10} \times \sqrt[4]{2} \times \sqrt[4]{9} \sqrt[4]{10} \times \sqrt[4]{2} \times \sqrt[4]{9}](https://tex.z-dn.net/?f=+%5Csqrt%5B4%5D%7B10%7D+%5Ctimes+%5Csqrt%5B4%5D%7B2%7D+%5Ctimes+%5Csqrt%5B4%5D%7B9%7D+)
e)
![\sqrt[3]{ \sqrt[]{18} } \sqrt[3]{ \sqrt[]{18} }](https://tex.z-dn.net/?f=+%5Csqrt%5B3%5D%7B+%5Csqrt%5B%5D%7B18%7D+%7D+)
f)
![\sqrt[]{7} \times \sqrt[]{12} \times \sqrt[]{3} \sqrt[]{7} \times \sqrt[]{12} \times \sqrt[]{3}](https://tex.z-dn.net/?f=+%5Csqrt%5B%5D%7B7%7D+%5Ctimes+%5Csqrt%5B%5D%7B12%7D+%5Ctimes+%5Csqrt%5B%5D%7B3%7D+)
g)
![\sqrt[4]{ \sqrt[]{3} } \sqrt[4]{ \sqrt[]{3} }](https://tex.z-dn.net/?f=+%5Csqrt%5B4%5D%7B+%5Csqrt%5B%5D%7B3%7D+%7D+)
j)
![\frac{ \sqrt[7]{13} }{ \sqrt[7]{9} } \frac{ \sqrt[7]{13} }{ \sqrt[7]{9} }](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csqrt%5B7%5D%7B13%7D+%7D%7B+%5Csqrt%5B7%5D%7B9%7D+%7D+)
n)
![( \sqrt[9]{4} ) {}^{3} ( \sqrt[9]{4} ) {}^{3}](https://tex.z-dn.net/?f=%28+%5Csqrt%5B9%5D%7B4%7D+%29+%7B%7D%5E%7B3%7D+)
t)
![\frac{ \sqrt[10]{5} }{ \sqrt[10]{5} } \times \sqrt[10]{20} \frac{ \sqrt[10]{5} }{ \sqrt[10]{5} } \times \sqrt[10]{20}](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csqrt%5B10%5D%7B5%7D+%7D%7B+%5Csqrt%5B10%5D%7B5%7D+%7D+%5Ctimes+%5Csqrt%5B10%5D%7B20%7D+)
w)
Soluções para a tarefa
Respondido por
0
Olá!!
![\textvf{a)} \textvf{a)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Ba%29%7D+)
![\sqrt[6]{ \sqrt{22} } \\ = \sqrt[6.2]{22} \\ = \sqrt[12]{22} \sqrt[6]{ \sqrt{22} } \\ = \sqrt[6.2]{22} \\ = \sqrt[12]{22}](https://tex.z-dn.net/?f=+%5Csqrt%5B6%5D%7B+%5Csqrt%7B22%7D+%7D+%5C%5C+%3D+%5Csqrt%5B6.2%5D%7B22%7D+%5C%5C+%3D+%5Csqrt%5B12%5D%7B22%7D+)
![\textvf{b)} \textvf{b)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bb%29%7D+)
![( \sqrt[8]{7}) {}^{2} \\ = \sqrt[4. \cancel{2} ]{ {7 }^{ \cancel{2}} } \\ = \sqrt[4]{7} ( \sqrt[8]{7}) {}^{2} \\ = \sqrt[4. \cancel{2} ]{ {7 }^{ \cancel{2}} } \\ = \sqrt[4]{7}](https://tex.z-dn.net/?f=+%28+%5Csqrt%5B8%5D%7B7%7D%29+%7B%7D%5E%7B2%7D+%5C%5C+%3D+%5Csqrt%5B4.+%5Ccancel%7B2%7D+%5D%7B+%7B7+%7D%5E%7B+%5Ccancel%7B2%7D%7D+%7D+%5C%5C+%3D+%5Csqrt%5B4%5D%7B7%7D+)
![\textvf{c)} \textvf{c)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bc%29%7D+)
![\sqrt[6]{ \frac{5}{6} } \times \sqrt[6]{12} \\ = \sqrt[6]{ \frac{5}{ \cancel{6} } \times 2. \cancel{6} } \\ = \sqrt[6]{5 \times 2} \\ = \sqrt[6]{10} \sqrt[6]{ \frac{5}{6} } \times \sqrt[6]{12} \\ = \sqrt[6]{ \frac{5}{ \cancel{6} } \times 2. \cancel{6} } \\ = \sqrt[6]{5 \times 2} \\ = \sqrt[6]{10}](https://tex.z-dn.net/?f=+%5Csqrt%5B6%5D%7B+%5Cfrac%7B5%7D%7B6%7D+%7D+%5Ctimes+%5Csqrt%5B6%5D%7B12%7D+%5C%5C+%3D+%5Csqrt%5B6%5D%7B+%5Cfrac%7B5%7D%7B+%5Ccancel%7B6%7D+%7D+%5Ctimes+2.+%5Ccancel%7B6%7D+%7D+%5C%5C+%3D+%5Csqrt%5B6%5D%7B5+%5Ctimes+2%7D+%5C%5C+%3D+%5Csqrt%5B6%5D%7B10%7D+)
![\textvf{d)} \textvf{d)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bd%29%7D+)
![\sqrt[4]{10} \times \sqrt[4]{2} \times \sqrt[4]{9} \\ = \sqrt[4]{10 \times 2 \times 9} \\ = \sqrt[4]{180} \sqrt[4]{10} \times \sqrt[4]{2} \times \sqrt[4]{9} \\ = \sqrt[4]{10 \times 2 \times 9} \\ = \sqrt[4]{180}](https://tex.z-dn.net/?f=+%5Csqrt%5B4%5D%7B10%7D+%5Ctimes+%5Csqrt%5B4%5D%7B2%7D+%5Ctimes+%5Csqrt%5B4%5D%7B9%7D+%5C%5C+%3D+%5Csqrt%5B4%5D%7B10+%5Ctimes+2+%5Ctimes+9%7D+%5C%5C+%3D+%5Csqrt%5B4%5D%7B180%7D+)
![\textvf{e)} \textvf{e)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Be%29%7D+)
![\sqrt[3]{ \sqrt{18} } \\ = \sqrt[3.2]{18} \\ = \sqrt[6]{18} \sqrt[3]{ \sqrt{18} } \\ = \sqrt[3.2]{18} \\ = \sqrt[6]{18}](https://tex.z-dn.net/?f=+%5Csqrt%5B3%5D%7B+%5Csqrt%7B18%7D+%7D+%5C%5C+%3D+%5Csqrt%5B3.2%5D%7B18%7D+%5C%5C+%3D+%5Csqrt%5B6%5D%7B18%7D+)
![\textvf{f)} \textvf{f)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bf%29%7D+)
![\sqrt{7} \times \sqrt{12} \times \sqrt{3} \\ = \sqrt{7 \times 12 \times 3} \\ = \sqrt{7 \times {2}^{2} \times 3 \times 3 } \\ = \sqrt{ {2}^{2} \times {3}^{2} \times 7 } \\ = 3.2 \sqrt{7} \\ = 6 \sqrt{7} \sqrt{7} \times \sqrt{12} \times \sqrt{3} \\ = \sqrt{7 \times 12 \times 3} \\ = \sqrt{7 \times {2}^{2} \times 3 \times 3 } \\ = \sqrt{ {2}^{2} \times {3}^{2} \times 7 } \\ = 3.2 \sqrt{7} \\ = 6 \sqrt{7}](https://tex.z-dn.net/?f=+%5Csqrt%7B7%7D+%5Ctimes+%5Csqrt%7B12%7D+%5Ctimes+%5Csqrt%7B3%7D+%5C%5C+%3D+%5Csqrt%7B7+%5Ctimes+12+%5Ctimes+3%7D+%5C%5C+%3D+%5Csqrt%7B7+%5Ctimes+%7B2%7D%5E%7B2%7D+%5Ctimes+3+%5Ctimes+3+%7D+%5C%5C+%3D+%5Csqrt%7B+%7B2%7D%5E%7B2%7D+%5Ctimes+%7B3%7D%5E%7B2%7D+%5Ctimes+7+%7D+%5C%5C+%3D+3.2+%5Csqrt%7B7%7D+%5C%5C+%3D+6+%5Csqrt%7B7%7D+)
![\textvf{g)} \textvf{g)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bg%29%7D+)
![\sqrt[4]{ \sqrt{3} } \\ = \sqrt[4.2]{3} \\ = \sqrt[8]{3} \sqrt[4]{ \sqrt{3} } \\ = \sqrt[4.2]{3} \\ = \sqrt[8]{3}](https://tex.z-dn.net/?f=+%5Csqrt%5B4%5D%7B+%5Csqrt%7B3%7D+%7D+%5C%5C+%3D+%5Csqrt%5B4.2%5D%7B3%7D+%5C%5C+%3D+%5Csqrt%5B8%5D%7B3%7D+)
![\textvf{j)} \textvf{j)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bj%29%7D+)
![\frac{ \sqrt[7]{13} }{ \sqrt[7]{9} } \\ = \sqrt[7]{ \frac{13}{9} } \frac{ \sqrt[7]{13} }{ \sqrt[7]{9} } \\ = \sqrt[7]{ \frac{13}{9} }](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csqrt%5B7%5D%7B13%7D+%7D%7B+%5Csqrt%5B7%5D%7B9%7D+%7D+%5C%5C+%3D+%5Csqrt%5B7%5D%7B+%5Cfrac%7B13%7D%7B9%7D+%7D+)
![\textvf{n)} \textvf{n)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bn%29%7D+)
![( \sqrt[9]{4}) {}^{3} \\ = \sqrt[\cancel{3}.3]{ {4}^{\cancel{3}} } \\ = \sqrt[3]{4} ( \sqrt[9]{4}) {}^{3} \\ = \sqrt[\cancel{3}.3]{ {4}^{\cancel{3}} } \\ = \sqrt[3]{4}](https://tex.z-dn.net/?f=+%28+%5Csqrt%5B9%5D%7B4%7D%29+%7B%7D%5E%7B3%7D+%5C%5C+%3D+%5Csqrt%5B%5Ccancel%7B3%7D.3%5D%7B+%7B4%7D%5E%7B%5Ccancel%7B3%7D%7D+%7D+%5C%5C+%3D+%5Csqrt%5B3%5D%7B4%7D+)
![\textvf{t)} \textvf{t)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bt%29%7D+)
![\frac{ \sqrt[10]{5} }{ \sqrt[10]{5} } \times \sqrt[10]{20} \\ = 1 \times \sqrt[10]{20} \\ = \sqrt[10]{20} \frac{ \sqrt[10]{5} }{ \sqrt[10]{5} } \times \sqrt[10]{20} \\ = 1 \times \sqrt[10]{20} \\ = \sqrt[10]{20}](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csqrt%5B10%5D%7B5%7D+%7D%7B+%5Csqrt%5B10%5D%7B5%7D+%7D+%5Ctimes+%5Csqrt%5B10%5D%7B20%7D+%5C%5C+%3D+1+%5Ctimes+%5Csqrt%5B10%5D%7B20%7D+%5C%5C+%3D+%5Csqrt%5B10%5D%7B20%7D+)
![\textvf{w)} \textvf{w)}](https://tex.z-dn.net/?f=+%5Ctextvf%7Bw%29%7D+)
![\frac{ \sqrt[12]{5} }{ \sqrt[12]{4} } \times \sqrt[4]{ \sqrt[3]{6} } \\ = \sqrt[12]{ \frac{5}{4} } \times \sqrt[4.3]{6} \\ = \sqrt[12]{ \frac{5}{4} } \times \sqrt[12]{6} \\ = \sqrt[12]{ \frac{5}{2. \cancel{2} } \times \cancel{2} .3} \\ \sqrt[12]{ \frac{15}{2} } \frac{ \sqrt[12]{5} }{ \sqrt[12]{4} } \times \sqrt[4]{ \sqrt[3]{6} } \\ = \sqrt[12]{ \frac{5}{4} } \times \sqrt[4.3]{6} \\ = \sqrt[12]{ \frac{5}{4} } \times \sqrt[12]{6} \\ = \sqrt[12]{ \frac{5}{2. \cancel{2} } \times \cancel{2} .3} \\ \sqrt[12]{ \frac{15}{2} }](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csqrt%5B12%5D%7B5%7D+%7D%7B+%5Csqrt%5B12%5D%7B4%7D+%7D+%5Ctimes+%5Csqrt%5B4%5D%7B+%5Csqrt%5B3%5D%7B6%7D+%7D+%5C%5C+%3D+%5Csqrt%5B12%5D%7B+%5Cfrac%7B5%7D%7B4%7D+%7D+%5Ctimes+%5Csqrt%5B4.3%5D%7B6%7D+%5C%5C+%3D+%5Csqrt%5B12%5D%7B+%5Cfrac%7B5%7D%7B4%7D+%7D+%5Ctimes+%5Csqrt%5B12%5D%7B6%7D+%5C%5C+%3D+%5Csqrt%5B12%5D%7B+%5Cfrac%7B5%7D%7B2.+%5Ccancel%7B2%7D+%7D+%5Ctimes+%5Ccancel%7B2%7D+.3%7D+%5C%5C+%5Csqrt%5B12%5D%7B+%5Cfrac%7B15%7D%7B2%7D+%7D+)
!
Perguntas interessantes
Matemática,
10 meses atrás
Ed. Física,
10 meses atrás
ENEM,
10 meses atrás
Geografia,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás