Matemática, perguntado por alemelo, 1 ano atrás

Racionalize os denominadores de:

Anexos:

Soluções para a tarefa

Respondido por oliverprof
2
Fiz num papel,pois pelo tabela seria bem mais trabalhoso. Espero ter ajudado.
Anexos:

alemelo: Valeu demais!!!!!!!!!!! obrigada
Respondido por Makaveli1996
0

Oie, Td Bom?!

a)

 \frac{13a}{ \sqrt[3]{a {}^{2} } }  =  \frac{13a}{ \sqrt[3]{a {}^{2} } }  \: . \:  \frac{ \sqrt[3]{a} }{ \sqrt[3]{a} }  =  \frac{13a \sqrt[3]{a} }{ \sqrt[3]{a {}^{2} }  \sqrt[3]{ a} }  = \frac{13a \sqrt[3]{a} }{ \sqrt[3]{a {}^{2} \: . \: a }} =  \frac{13a \sqrt[3]{a} }{ \sqrt[3]{a {}^{3} } }  =  \frac{13a \sqrt[3]{a} }{a}  = 13\sqrt[3]{a}

b)

 \frac{t}{ \sqrt[5]{t} }  =  \frac{t}{ \sqrt[5]{t} }  \: . \:  \frac{ \sqrt[5]{t {}^{4} } }{ \sqrt[5]{t {}^{4} } }  =  \frac{t \sqrt[5]{t {}^{4} } }{ \sqrt[5]{t}  \sqrt[5]{t {}^{4} } }  =  \frac{t \sqrt[5]{t {}^{4} } }{ \sqrt[5]{t \: . \: t {}^{4} } }  =  \frac{t \sqrt[5]{t {}^{4} } }{t}  =  \sqrt[5]{t {}^{4} }

c)

 \frac{15r}{ \sqrt[4]{3r} }  =  \frac{15r}{ \sqrt[4]{3r} }  \: . \:  \frac{  \sqrt[4]{(3r) {}^{3} } }{ \sqrt[4]{(3r) {}^{3} } }  =  \frac{15r \sqrt[4]{(3r) {}^{3} } }{ \sqrt[4]{3r} \sqrt[4]{(3r) {}^{3} }  }  =  \frac{15r \sqrt[4]{(3r) {}^{3} } }{ \sqrt[4]{3r \: . \: (3r) {}^{3} } }  =  \frac{15r \sqrt[4]{(3r) {}^{3} } }{ \sqrt[4]{3r \: . \: 27r {}^{3} } }  =  \frac{15r \sqrt[4]{(3r) {}^{3} } }{ \sqrt[4]{81r {}^{4} } }  =  \frac{15r \sqrt[4]{(3r) {}^{3} } }{3r}  = 5 \sqrt[4]{(3r) {}^{3} }  = 5 \sqrt[4]{27r {}^{3} }

d)

 \frac{18x \sqrt[3]{x} }{ \sqrt[3]{x {}^{2} } }  =  \frac{18x }{ \sqrt[3]{x} }  =  \frac{18x}{ \sqrt[3]{x} }  \: . \:  \frac{ \sqrt[3]{x {}^{2} } }{ \sqrt[3]{x {}^{2} } }  =  \frac{18x \sqrt[3]{x {}^{2} } }{ \sqrt[3]{x} \sqrt[3]{x {}^{2} }  }  =  \frac{18x \sqrt[3]{x {}^{2} } }{ \sqrt[3]{x \: . \: x {}^{2} } }  =  \frac{18x \sqrt[3]{x {}^{2} } }{ \sqrt[3]{x {}^{3} } }  =  \frac{18x \sqrt[3]{x {}^{2} } }{x}  = 18 \sqrt[3]{x {}^{2} }

e)

 \frac{25mx}{ \sqrt[4]{mx {}^{2} } }  =  \frac{25mx}{ \sqrt[4]{mx {}^{2} } }  \: . \:  \frac{ \sqrt[4]{(mx {}^{2} ) {}^{3} } }{ \sqrt[4]{(mx {}^{2} ) {}^{3} } }  =  \frac{25mx \sqrt[4]{(mx {}^{2}) {}^{3}  } }{ \sqrt[4]{mx {}^{2} }   \sqrt[4]{(mx {}^{2} ) {}^{3} } }  =  \frac{25mx \sqrt[4]{(mx {}^{2} ) {}^{3} } }{ \sqrt[4]{mx {}^{2} \: . \: (mx {}^{2}  ) {}^{3} } }  =  \frac{25m \sqrt[4]{(mx {}^{2} ) {}^{3} } }{ \sqrt[4]{mx {}^{2}m {}^{3}  x {}^{6} } }  =  \frac{25mx \sqrt[4]{(mx {}^{2}) {}^{3}  } }{ \sqrt[4]{m {}^{4} x {}^{8} } }  =  \frac{25mx \sqrt[4]{(mx {}^{2} ) {}^{3} } }{mx {}^{2} }  =  \frac{25 \sqrt[4]{(mx {}^{2} ) {}^{3} } }{x}  =  \frac{25 \sqrt[4]{m {}^{3}x {}^{6}  } }{x} =  \frac{25x \sqrt[4]{m {}^{3}x {}^{2}  } }{x}   = 25 \sqrt[4]{m {}^{3} x {}^{2} }

f)

 \frac{15 \sqrt[5]{m {}^{2} } }{ \sqrt[5]{2m {}^{3} } }  =  \frac{15}{ \sqrt[5]{2m} }  =  \frac{15}{ \sqrt[5]{2m} }  \: . \:  \frac{ \sqrt[5]{(2m) {}^{4} } }{ \sqrt[5]{(2m) {}^{4} } }  =  \frac{15 \sqrt[5]{(2m) {}^{4} } }{ \sqrt[5]{2m}  \sqrt[5]{(2m) {}^{4} } }  =  \frac{15 \sqrt[5]{16m {}^{4} } }{ \sqrt[5]{2m \: . \: (2m) {}^{4}  } }  =  \frac{15 \sqrt[5]{16m {}^{4} } }{ \sqrt[5]{2m \: . \: 16m {}^{4} } }  =  \frac{15 \sqrt[5]{16m {}^{4} } }{ \sqrt[5]{32m {}^{5} } }  =  \frac{15 \sqrt[5]{16m {}^{4} } }{2m}

g)

 \frac{ \sqrt{  a} }{ \sqrt[4]{a {}^{3} } }  =  \frac{a {}^{ \frac{1}{2} } }{ a {}^{ \frac{3}{4} } }  =  \frac{1}{a {}^{ \frac{1}{4} } }  =  \frac{1}{ \sqrt[4]{a} }  =  \frac{1}{ \sqrt[4]{a} }  \: . \:  \frac{ \sqrt[4]{a {}^{3} } }{ \sqrt[4]{a {}^{3} } }  =  \frac{1 \sqrt[4]{a {}^{3} } }{ \sqrt[4]{ a} \sqrt[4]{a {}^{3} }  }  =  \frac{ \sqrt[4]{a {}^{3} } }{ \sqrt[4]{a \: . \: a {}^{3} } }  =  \frac{ \sqrt[4]{a {}^{3} } }{ \sqrt[4]{a {}^{4} } }  =  \frac{ \sqrt[4]{a {}^{3} } }{a}

h)

 \frac{m \sqrt{x} }{ \sqrt[6]{m {}^{5} } }  =  \frac{m \sqrt{x} }{ \sqrt[6]{m {}^{5} } }  \: . \:  \frac{ \sqrt[6]{m} }{ \sqrt[6]{m} }  =  \frac{m \sqrt{x}  \sqrt[6]{m} }{ \sqrt[6]{m {}^{5} } \sqrt[6]{m}  }  =  \frac{m \sqrt{x}  \sqrt[6]{m} }{ \sqrt[6]{m {}^{5} \: . \: m } }  =  \frac{m \sqrt{x} \sqrt[6]{m}  }{ \sqrt[6]{m {}^{6} } }  =  \frac{m \sqrt{x} \sqrt[6]{m}  }{m}  =  \sqrt{x}  \sqrt[6]{m}  =  \sqrt[6]{mx {}^{3} }

Att. Makaveli1996

Perguntas interessantes