Matemática, perguntado por amorimlais555, 10 meses atrás

racionalize o denominador de cada uma das seguintes frações:
 \frac{2}{ \sqrt{3} }
b)
 \frac{1}{ \sqrt{2} }
c)
 \frac{ \sqrt{3} }{ \sqrt{5} }
d)
 \frac{1}{2 +  \sqrt{2} }
ajuda prvf!!!

Soluções para a tarefa

Respondido por ViniSouza128
1

\textrm{a)}\ \dfrac{2}{\sqrt3}=\dfrac{2}{\sqrt3}\times 1=\dfrac{2}{\sqrt3}\times\dfrac{\sqrt3}{\sqrt3}=\dfrac{2\times\sqrt3}{\sqrt3\times\sqrt3}=\dfrac{2\sqrt3}{\sqrt{3\times3}}=\dfrac{2\sqrt3}{\sqrt{3^2}}=\dfrac{2\sqrt3}{\sqrt3^2}=\dfrac{2\sqrt3}{3}

\textrm{b)}\ \dfrac{1}{\sqrt2}=\dfrac{1}{\sqrt2}\times 1=\dfrac{1}{\sqrt2}\times\dfrac{\sqrt2}{\sqrt2}=\dfrac{1\times\sqrt2}{\sqrt2\times\sqrt2}=\dfrac{1\sqrt2}{\sqrt{2\times2}}=\dfrac{\sqrt2}{\sqrt{2^2}}=\dfrac{\sqrt2}{\sqrt{2}^2}=\dfrac{\sqrt2}2\\\\\\

\textrm{c)}\ \dfrac{\sqrt3}{\sqrt5}=\dfrac{\sqrt3}{\sqrt5}\times 1=\dfrac{\sqrt3}{\sqrt5}\times\dfrac{\sqrt5}{\sqrt5}=\dfrac{\sqrt3\times\sqrt5}{\sqrt5\times\sqrt5}=\dfrac{\sqrt{3\times5}}{\sqrt{5\times5}}=\dfrac{\sqrt{15}}{\sqrt{5^2}}=\dfrac{\sqrt{15}}{\sqrt{5}^2}=\dfrac{\sqrt{15}}{5}

\textrm{d)}\ \dfrac{1}{2+\sqrt2}\\\\\\=\dfrac{1}{2+\sqrt2}\times 1\\\\\\=\dfrac{1}{2+\sqrt2}\times\dfrac{{2-\sqrt2}}{{2-\sqrt2}}\\\\\\=\dfrac{1\times(2-\sqrt2)}{(2+\sqrt2)\times(2-\sqrt2)}\\\\\\=\dfrac{2-\sqrt2}{2^2-\sqrt2^2}\\\\\\=\dfrac{2-\sqrt2}{4-2}\\\\\\=\dfrac{2-\sqrt2}{2}\\\\\\

Perguntas interessantes