racionalize o denominador das fraçoes:
a) 3/5-raiz de 5
b) 4*raiz de 3/raiz de 2 + raiz de 3
c) raiz de 2- 1/raiz de 7 - raiz de 3
Soluções para a tarefa
Respondido por
6
Lembrando:
![(a + b)(a - b) = a^{2} - b^{2} (a + b)(a - b) = a^{2} - b^{2}](https://tex.z-dn.net/?f=%28a+%2B+b%29%28a+-+b%29+%3D+a%5E%7B2%7D+-+b%5E%7B2%7D)
![\sqrt[n]{z}^{n}= z \sqrt[n]{z}^{n}= z](https://tex.z-dn.net/?f=+%5Csqrt%5Bn%5D%7Bz%7D%5E%7Bn%7D%3D+z)
_________________________
a)
![\frac{3}{5 - \sqrt{5} } \frac{3}{5 - \sqrt{5} }](https://tex.z-dn.net/?f=+%5Cfrac%7B3%7D%7B5+-++%5Csqrt%7B5%7D+%7D+)
Multiplicando o numerador e o denominador pelo conjugado de (5 - √5):
![\frac{3*(5 + \sqrt{5}) }{(5 - \sqrt{5})*(5 + \sqrt{5})} \frac{3*(5 + \sqrt{5}) }{(5 - \sqrt{5})*(5 + \sqrt{5})}](https://tex.z-dn.net/?f=+%5Cfrac%7B3%2A%285+%2B++%5Csqrt%7B5%7D%29+%7D%7B%285+-++%5Csqrt%7B5%7D%29%2A%285+%2B+%5Csqrt%7B5%7D%29%7D+)
![\frac{3(5 + \sqrt{5} )}{(5^{2} - \sqrt{5}^{2}) } \frac{3(5 + \sqrt{5} )}{(5^{2} - \sqrt{5}^{2}) }](https://tex.z-dn.net/?f=+%5Cfrac%7B3%285+%2B+%5Csqrt%7B5%7D+%29%7D%7B%285%5E%7B2%7D+-+%5Csqrt%7B5%7D%5E%7B2%7D%29+%7D+)
![\frac{15 - 3\sqrt{5} }{25 - 5} \frac{15 - 3\sqrt{5} }{25 - 5}](https://tex.z-dn.net/?f=+%5Cfrac%7B15+-+3%5Csqrt%7B5%7D+%7D%7B25+-+5%7D+)
![\frac{15 - 3 \sqrt{5}}{20} \frac{15 - 3 \sqrt{5}}{20}](https://tex.z-dn.net/?f=+%5Cfrac%7B15+-+3+%5Csqrt%7B5%7D%7D%7B20%7D+)
b)
![\frac{4 \sqrt{3} }{ \sqrt{2} + \sqrt{3} } \frac{4 \sqrt{3} }{ \sqrt{2} + \sqrt{3} }](https://tex.z-dn.net/?f=+%5Cfrac%7B4+%5Csqrt%7B3%7D+%7D%7B+%5Csqrt%7B2%7D+%2B+%5Csqrt%7B3%7D+%7D+)
![\frac{4 \sqrt{3}*( \sqrt{2} - \sqrt{3})}{(\sqrt{2} + \sqrt{3})*( \sqrt{2} - \sqrt{3}) } \frac{4 \sqrt{3}*( \sqrt{2} - \sqrt{3})}{(\sqrt{2} + \sqrt{3})*( \sqrt{2} - \sqrt{3}) }](https://tex.z-dn.net/?f=+%5Cfrac%7B4+%5Csqrt%7B3%7D%2A%28+%5Csqrt%7B2%7D+-+%5Csqrt%7B3%7D%29%7D%7B%28%5Csqrt%7B2%7D+%2B+%5Csqrt%7B3%7D%29%2A%28+%5Csqrt%7B2%7D+-+%5Csqrt%7B3%7D%29++%7D+)
![\frac{4 \sqrt{6} - 4 \sqrt{3}^{2}}{\sqrt{2}^{2} - \sqrt{3}^{2}} \frac{4 \sqrt{6} - 4 \sqrt{3}^{2}}{\sqrt{2}^{2} - \sqrt{3}^{2}}](https://tex.z-dn.net/?f=+%5Cfrac%7B4+%5Csqrt%7B6%7D+-+4+%5Csqrt%7B3%7D%5E%7B2%7D%7D%7B%5Csqrt%7B2%7D%5E%7B2%7D+-+%5Csqrt%7B3%7D%5E%7B2%7D%7D+)
![\frac{4 \sqrt{6} - 4*3}{- 1} \frac{4 \sqrt{6} - 4*3}{- 1}](https://tex.z-dn.net/?f=+%5Cfrac%7B4+%5Csqrt%7B6%7D+-+4%2A3%7D%7B-+1%7D+)
![- (4 \sqrt{6} - 12) - (4 \sqrt{6} - 12)](https://tex.z-dn.net/?f=-+%284+%5Csqrt%7B6%7D+-+12%29)
![12 - 4 \sqrt{6} 12 - 4 \sqrt{6}](https://tex.z-dn.net/?f=12+-+4+%5Csqrt%7B6%7D+)
c)
![\frac{ \sqrt{2} - 1}{\sqrt{7} - \sqrt{3}} \frac{ \sqrt{2} - 1}{\sqrt{7} - \sqrt{3}}](https://tex.z-dn.net/?f=+%5Cfrac%7B+%5Csqrt%7B2%7D+-+1%7D%7B%5Csqrt%7B7%7D+-++%5Csqrt%7B3%7D%7D+)
![\frac{( \sqrt{2} - 1)*( \sqrt{7} + \sqrt{3}) }{(\sqrt{7} - \sqrt{3})*( \sqrt{7} + \sqrt{3})} \frac{( \sqrt{2} - 1)*( \sqrt{7} + \sqrt{3}) }{(\sqrt{7} - \sqrt{3})*( \sqrt{7} + \sqrt{3})}](https://tex.z-dn.net/?f=+%5Cfrac%7B%28+%5Csqrt%7B2%7D+-+1%29%2A%28+%5Csqrt%7B7%7D+%2B++%5Csqrt%7B3%7D%29+%7D%7B%28%5Csqrt%7B7%7D+-++%5Csqrt%7B3%7D%29%2A%28+%5Csqrt%7B7%7D+%2B++%5Csqrt%7B3%7D%29%7D+)
![\frac{( \sqrt{2} - 1)( \sqrt{7} + \sqrt{3})}{ \sqrt{7}^{2} - \sqrt{3}^{2} } \frac{( \sqrt{2} - 1)( \sqrt{7} + \sqrt{3})}{ \sqrt{7}^{2} - \sqrt{3}^{2} }](https://tex.z-dn.net/?f=+%5Cfrac%7B%28+%5Csqrt%7B2%7D+-+1%29%28+%5Csqrt%7B7%7D+%2B+%5Csqrt%7B3%7D%29%7D%7B+%5Csqrt%7B7%7D%5E%7B2%7D+-++%5Csqrt%7B3%7D%5E%7B2%7D++%7D+)
![\frac{( \sqrt{2} - 1)( \sqrt{7} + \sqrt{3})}{7 - 3} \frac{( \sqrt{2} - 1)( \sqrt{7} + \sqrt{3})}{7 - 3}](https://tex.z-dn.net/?f=+%5Cfrac%7B%28+%5Csqrt%7B2%7D+-+1%29%28+%5Csqrt%7B7%7D+%2B+%5Csqrt%7B3%7D%29%7D%7B7+-+3%7D+)
![\frac{( \sqrt{2} - 1)( \sqrt{7} + \sqrt{3})}{4} \frac{( \sqrt{2} - 1)( \sqrt{7} + \sqrt{3})}{4}](https://tex.z-dn.net/?f=+%5Cfrac%7B%28+%5Csqrt%7B2%7D+-+1%29%28+%5Csqrt%7B7%7D+%2B+%5Csqrt%7B3%7D%29%7D%7B4%7D+)
_________________________
a)
Multiplicando o numerador e o denominador pelo conjugado de (5 - √5):
b)
c)
Perguntas interessantes
História,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
História,
1 ano atrás