QUESTÃO | x+2/2x−3| < 4
Eu sei mais ou menos fazer a questão, até cheguei aos resultados finais mas ainda fico meio confuso
COMO APRENDI Primeiro tiro o modulo ai fica -4 < | x+2/2x−3| < 4 ai resolvo separado -4 < | x+2/2x−3| e | x+2/2x−3| < 4
Ai fico confuso nessa parte, minha professora diz que tem que resolver se x>0 e x<0
-4 < x+2/2x+3
x>0 = x<10/9 x<0= x>10/9
x+2/2x+3<4
x>0 = 2>x x<0= x<2
Ok, cheguei a esses quatro resultado e agora?, no fim sei que só vai usar 2 deles, mas qual? x<10/9 ou x>10/9 ???? ai que não entendo ai por fim ela pede pra por em notação de intervalo e conjunto e representar graficamente, ALGUEM ME EXPLICA, PLEASE
Soluções para a tarefa
Respondido por
0
Olá!
Você retira o módulo e resolve pra o caso "< 4" e para o caso "< - 4" (mas tudo sem o módulo), e faz as interseções dos resultados. Veja:
![\bigg{|}\dfrac{x+2}{2x-3}\bigg{|}\ \textless \ 4\\ \\
\text{\bf{Para o caso $\ \textless \ 4$}}\\ \\
\dfrac{x+2}{2x-3}\ \textless \ 4\Leftrightarrow \dfrac{x+2}{2x-3}-4\ \textless \ 0\Leftrightarrow
\dfrac{x+2-4(2x-3)}{2x-3}\ \textless \ 0\Leftrightarrow \\ \\
\Leftrightarrow \dfrac{-7x+14}{2x-3}\ \textless \ 0\Leftrightarrow
\left\{\begin{array}{lcr}-7x+14&\ \textless \ &0\\ \text{e}&\;&\;\\ 2x-3&\ \textgreater \ &0 \end{array}\right.\;\;\text{ou}\;\;\left\{\begin{array}{lcr}-7x+14&\ \textgreater \ &0\\ \text{e}&\;&\;\\ 2x-3&\ \textless \ &0\end{array}\right.\\ \\
\text{Ou seja,} \bigg{|}\dfrac{x+2}{2x-3}\bigg{|}\ \textless \ 4\\ \\
\text{\bf{Para o caso $\ \textless \ 4$}}\\ \\
\dfrac{x+2}{2x-3}\ \textless \ 4\Leftrightarrow \dfrac{x+2}{2x-3}-4\ \textless \ 0\Leftrightarrow
\dfrac{x+2-4(2x-3)}{2x-3}\ \textless \ 0\Leftrightarrow \\ \\
\Leftrightarrow \dfrac{-7x+14}{2x-3}\ \textless \ 0\Leftrightarrow
\left\{\begin{array}{lcr}-7x+14&\ \textless \ &0\\ \text{e}&\;&\;\\ 2x-3&\ \textgreater \ &0 \end{array}\right.\;\;\text{ou}\;\;\left\{\begin{array}{lcr}-7x+14&\ \textgreater \ &0\\ \text{e}&\;&\;\\ 2x-3&\ \textless \ &0\end{array}\right.\\ \\
\text{Ou seja,}](https://tex.z-dn.net/?f=%5Cbigg%7B%7C%7D%5Cdfrac%7Bx%2B2%7D%7B2x-3%7D%5Cbigg%7B%7C%7D%5C+%5Ctextless+%5C+4%5C%5C+%5C%5C%0A%0A%5Ctext%7B%5Cbf%7BPara+o+caso+%24%5C+%5Ctextless+%5C+4%24%7D%7D%5C%5C+%5C%5C+%0A%0A%5Cdfrac%7Bx%2B2%7D%7B2x-3%7D%5C+%5Ctextless+%5C+4%5CLeftrightarrow+%5Cdfrac%7Bx%2B2%7D%7B2x-3%7D-4%5C+%5Ctextless+%5C+0%5CLeftrightarrow+%0A%5Cdfrac%7Bx%2B2-4%282x-3%29%7D%7B2x-3%7D%5C+%5Ctextless+%5C+0%5CLeftrightarrow+%5C%5C+%5C%5C+%0A%0A%5CLeftrightarrow+%5Cdfrac%7B-7x%2B14%7D%7B2x-3%7D%5C+%5Ctextless+%5C+0%5CLeftrightarrow%0A%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcr%7D-7x%2B14%26amp%3B%5C+%5Ctextless+%5C+%26amp%3B0%5C%5C+%5Ctext%7Be%7D%26amp%3B%5C%3B%26amp%3B%5C%3B%5C%5C+2x-3%26amp%3B%5C+%5Ctextgreater+%5C+%26amp%3B0+%5Cend%7Barray%7D%5Cright.%5C%3B%5C%3B%5Ctext%7Bou%7D%5C%3B%5C%3B%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcr%7D-7x%2B14%26amp%3B%5C+%5Ctextgreater+%5C+%26amp%3B0%5C%5C+%5Ctext%7Be%7D%26amp%3B%5C%3B%26amp%3B%5C%3B%5C%5C+2x-3%26amp%3B%5C+%5Ctextless+%5C+%26amp%3B0%5Cend%7Barray%7D%5Cright.%5C%5C+%5C%5C%0A%0A%5Ctext%7BOu+seja%2C%7D)
![\left\{\begin{array}{lcr}x&\ \textgreater \ &2\\ \text{e}&\;&\;\\ x&\ \textgreater \ &\frac{3}{2} \end{array}\right.\;\;\text{ou}\;\;\left\{\begin{array}{lcr}x&\ \textless \ &2\\ \text{e}&\;&\;\\ x&\ \textless \ &\frac{3}{2}\end{array}\right. \Rightarrow x\in\left]-\infty,\frac{3}{2}\right[\cup
\left]2,+\infty\right[. \left\{\begin{array}{lcr}x&\ \textgreater \ &2\\ \text{e}&\;&\;\\ x&\ \textgreater \ &\frac{3}{2} \end{array}\right.\;\;\text{ou}\;\;\left\{\begin{array}{lcr}x&\ \textless \ &2\\ \text{e}&\;&\;\\ x&\ \textless \ &\frac{3}{2}\end{array}\right. \Rightarrow x\in\left]-\infty,\frac{3}{2}\right[\cup
\left]2,+\infty\right[.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcr%7Dx%26amp%3B%5C+%5Ctextgreater+%5C+%26amp%3B2%5C%5C+%5Ctext%7Be%7D%26amp%3B%5C%3B%26amp%3B%5C%3B%5C%5C+x%26amp%3B%5C+%5Ctextgreater+%5C+%26amp%3B%5Cfrac%7B3%7D%7B2%7D+%5Cend%7Barray%7D%5Cright.%5C%3B%5C%3B%5Ctext%7Bou%7D%5C%3B%5C%3B%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcr%7Dx%26amp%3B%5C+%5Ctextless+%5C+%26amp%3B2%5C%5C+%5Ctext%7Be%7D%26amp%3B%5C%3B%26amp%3B%5C%3B%5C%5C+x%26amp%3B%5C+%5Ctextless+%5C+%26amp%3B%5Cfrac%7B3%7D%7B2%7D%5Cend%7Barray%7D%5Cright.+%5CRightarrow+x%5Cin%5Cleft%5D-%5Cinfty%2C%5Cfrac%7B3%7D%7B2%7D%5Cright%5B%5Ccup+%0A%5Cleft%5D2%2C%2B%5Cinfty%5Cright%5B.)
Para o caso
![\dfrac{x+2}{2x-3}\ \textless \ -4\Leftrightarrow \dfrac{x+2}{2x-3}+4\ \textless \ 0\Leftrightarrow \dfrac{x+2+4(2x-3)}{2x-3}\ \textless \ 0\Leftrightarrow \\ \\ \\ \Leftrightarrow \dfrac{9x-10}{2x-3}\ \textless \ 0\Leftrightarrow \left\{\begin{array}{lcr}9x-10&\ \textless \ &0\\ \text{e}&\;&\;\\ 2x-3&\ \textgreater \ &0 \end{array}\right.\;\;\text{ou}\;\;\left\{\begin{array}{lcr}9x-10&\ \textgreater \ &0\\ \text{e}&\;&\;\\ 2x-3&\ \textless \ &0\end{array}\right. \dfrac{x+2}{2x-3}\ \textless \ -4\Leftrightarrow \dfrac{x+2}{2x-3}+4\ \textless \ 0\Leftrightarrow \dfrac{x+2+4(2x-3)}{2x-3}\ \textless \ 0\Leftrightarrow \\ \\ \\ \Leftrightarrow \dfrac{9x-10}{2x-3}\ \textless \ 0\Leftrightarrow \left\{\begin{array}{lcr}9x-10&\ \textless \ &0\\ \text{e}&\;&\;\\ 2x-3&\ \textgreater \ &0 \end{array}\right.\;\;\text{ou}\;\;\left\{\begin{array}{lcr}9x-10&\ \textgreater \ &0\\ \text{e}&\;&\;\\ 2x-3&\ \textless \ &0\end{array}\right.](https://tex.z-dn.net/?f=+%5Cdfrac%7Bx%2B2%7D%7B2x-3%7D%5C+%5Ctextless+%5C+-4%5CLeftrightarrow+%5Cdfrac%7Bx%2B2%7D%7B2x-3%7D%2B4%5C+%5Ctextless+%5C+0%5CLeftrightarrow+%5Cdfrac%7Bx%2B2%2B4%282x-3%29%7D%7B2x-3%7D%5C+%5Ctextless+%5C+0%5CLeftrightarrow+%5C%5C+%5C%5C+%5C%5C+%5CLeftrightarrow+%5Cdfrac%7B9x-10%7D%7B2x-3%7D%5C+%5Ctextless+%5C+0%5CLeftrightarrow+%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcr%7D9x-10%26amp%3B%5C+%5Ctextless+%5C+%26amp%3B0%5C%5C+%5Ctext%7Be%7D%26amp%3B%5C%3B%26amp%3B%5C%3B%5C%5C+2x-3%26amp%3B%5C+%5Ctextgreater+%5C+%26amp%3B0+%5Cend%7Barray%7D%5Cright.%5C%3B%5C%3B%5Ctext%7Bou%7D%5C%3B%5C%3B%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcr%7D9x-10%26amp%3B%5C+%5Ctextgreater+%5C+%26amp%3B0%5C%5C+%5Ctext%7Be%7D%26amp%3B%5C%3B%26amp%3B%5C%3B%5C%5C+2x-3%26amp%3B%5C+%5Ctextless+%5C+%26amp%3B0%5Cend%7Barray%7D%5Cright.)
Ou seja,
![\left\{\begin{array}{lcr}x&\ \textless \ &\frac{10}{9}\\ \text{e}&\;&\;\\ x&\ \textgreater \ &\frac{3}{2} \end{array}\right.\;\;\text{ou}\;\;\left\{\begin{array}{lcr}x&\ \textgreater \ &\frac{10}{9}\\ \text{e}&\;&\;\\ x&\ \textless \ &\frac{3}{2}\end{array}\right.\Rightarrow x\in\left]\frac{10}{9},\frac{3}{2}\right[. \left\{\begin{array}{lcr}x&\ \textless \ &\frac{10}{9}\\ \text{e}&\;&\;\\ x&\ \textgreater \ &\frac{3}{2} \end{array}\right.\;\;\text{ou}\;\;\left\{\begin{array}{lcr}x&\ \textgreater \ &\frac{10}{9}\\ \text{e}&\;&\;\\ x&\ \textless \ &\frac{3}{2}\end{array}\right.\Rightarrow x\in\left]\frac{10}{9},\frac{3}{2}\right[.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcr%7Dx%26amp%3B%5C+%5Ctextless+%5C+%26amp%3B%5Cfrac%7B10%7D%7B9%7D%5C%5C+%5Ctext%7Be%7D%26amp%3B%5C%3B%26amp%3B%5C%3B%5C%5C+x%26amp%3B%5C+%5Ctextgreater+%5C+%26amp%3B%5Cfrac%7B3%7D%7B2%7D+%5Cend%7Barray%7D%5Cright.%5C%3B%5C%3B%5Ctext%7Bou%7D%5C%3B%5C%3B%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Blcr%7Dx%26amp%3B%5C+%5Ctextgreater+%5C+%26amp%3B%5Cfrac%7B10%7D%7B9%7D%5C%5C+%5Ctext%7Be%7D%26amp%3B%5C%3B%26amp%3B%5C%3B%5C%5C+x%26amp%3B%5C+%5Ctextless+%5C+%26amp%3B%5Cfrac%7B3%7D%7B2%7D%5Cend%7Barray%7D%5Cright.%5CRightarrow+x%5Cin%5Cleft%5D%5Cfrac%7B10%7D%7B9%7D%2C%5Cfrac%7B3%7D%7B2%7D%5Cright%5B.)
Fazendo a interseção desses dois casos, temos:
![\left\{\begin{array}{l}x\in\left]-\infty,\frac{3}{2}\right[\cup \left]2,+\infty\right[\\ \text{e} \\ x\in\left]\frac{10}{9},\frac{3}{2}\right[ \end{array}\right.\Rightarrow
x\in\left]\frac{10}{9},\frac{3}{2}\right[. \\ \\ \\
\text{Portanto, a solu\c c\~ao \bf{S} \'e}\\ \\
S=\left\{x\in\mathbb{R}:\frac{10}{9}\ \textless \ x\ \textless \ \frac{3}{2}\right\}. \left\{\begin{array}{l}x\in\left]-\infty,\frac{3}{2}\right[\cup \left]2,+\infty\right[\\ \text{e} \\ x\in\left]\frac{10}{9},\frac{3}{2}\right[ \end{array}\right.\Rightarrow
x\in\left]\frac{10}{9},\frac{3}{2}\right[. \\ \\ \\
\text{Portanto, a solu\c c\~ao \bf{S} \'e}\\ \\
S=\left\{x\in\mathbb{R}:\frac{10}{9}\ \textless \ x\ \textless \ \frac{3}{2}\right\}.](https://tex.z-dn.net/?f=%5Cleft%5C%7B%5Cbegin%7Barray%7D%7Bl%7Dx%5Cin%5Cleft%5D-%5Cinfty%2C%5Cfrac%7B3%7D%7B2%7D%5Cright%5B%5Ccup+%5Cleft%5D2%2C%2B%5Cinfty%5Cright%5B%5C%5C+%5Ctext%7Be%7D+%5C%5C+x%5Cin%5Cleft%5D%5Cfrac%7B10%7D%7B9%7D%2C%5Cfrac%7B3%7D%7B2%7D%5Cright%5B+%5Cend%7Barray%7D%5Cright.%5CRightarrow%0Ax%5Cin%5Cleft%5D%5Cfrac%7B10%7D%7B9%7D%2C%5Cfrac%7B3%7D%7B2%7D%5Cright%5B.+%5C%5C+%5C%5C+%5C%5C%0A%0A%5Ctext%7BPortanto%2C+a+solu%5Cc+c%5C%7Eao+%5Cbf%7BS%7D+%5C%27e%7D%5C%5C+%5C%5C%0A%0AS%3D%5Cleft%5C%7Bx%5Cin%5Cmathbb%7BR%7D%3A%5Cfrac%7B10%7D%7B9%7D%5C+%5Ctextless+%5C+x%5C+%5Ctextless+%5C+%5Cfrac%7B3%7D%7B2%7D%5Cright%5C%7D.)
Bons estudos!
Você retira o módulo e resolve pra o caso "< 4" e para o caso "< - 4" (mas tudo sem o módulo), e faz as interseções dos resultados. Veja:
Para o caso
Ou seja,
Fazendo a interseção desses dois casos, temos:
Bons estudos!
Perguntas interessantes
Matemática,
11 meses atrás
Geografia,
11 meses atrás
Matemática,
11 meses atrás
Química,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Química,
1 ano atrás