Matemática, perguntado por elbabarbosa2554, 1 ano atrás

Questão de química + matemática Dada a seguinte equação química: KMnO_4+\alpha FeSO_4+H_2SO_4\rightarrow K_2SO_4+MnSO_4+Fe_2(SO_4)_3+H_2O Determine a função y da equação diferencial, sendo que o balanceamento é só com números inteiros. y''+y=\frac{sin(6x-\frac{6x}{\pi}*arccos\left(-\frac{5}{\alpha}\right)}{2*cos(x)},~~y'(0)=y(0)=0

Soluções para a tarefa

Respondido por carlosmath
1
\alpha_1\text{K Mn O}_4+\alpha_2 \text{ Fe SO}_4+\alpha_3\text{H}_2\text{S}\text{O}_4 \longrightarrow \cdots\\
\cdots\longrightarrow \alpha_4\text{K}_2\text{SO}_4+\alpha_5\text{Mn}\text{ SO}_4+\alpha_6\text{Fe}_2(\text{SO}_4)_3+\alpha_7\text{H}_2\text{O}


\text{Elemento }K:~\alpha_1=2\alpha_4\\
\text{Elemento }Mn:~\alpha_1=\alpha_5\\
\text{Elemento }O:~4\alpha_1+4\alpha_2+4\alpha_3=4\alpha_4+4\alpha_5+12\alpha_6+\alpha_7\\
\text{Elemento }Fe:~\alpha_2=2\alpha_6\\
\text{Elemento }S:~\alpha_2+\alpha_3=\alpha_4+\alpha_5+3\alpha_6\\
\text{Elemento }H:~2\alpha_3=2\alpha_7

Ordenando:

\begin{cases} 
\alpha_4=\frac{\alpha_1}{2}\\ 
\alpha_5=\alpha_1\\ 4\alpha_1+4\alpha_2+4\alpha_3=2\alpha_1+4\alpha_1+12\alpha_6+\alpha_7\\ 
\alpha_2+\alpha_3=\alpha_4+\alpha_5+3\alpha_6\\
\alpha_6=\frac{\alpha_2}{2}\\ \alpha_7=\alpha_3 
\end{cases}\\ \\ \\ 
\begin{cases} 
\alpha_4=\frac{\alpha_1}{2}\\ 
\alpha_5=\alpha_1\\ 4\alpha_1+4\alpha_2+4\alpha_3=2\alpha_1+4\alpha_1+6\alpha_2+\alpha_3\\ 
\alpha_2+\alpha_3=\alpha_1/2+\alpha_1+3/2\alpha_2\\
\alpha_6=\frac{\alpha_2}{2}\\ 
\alpha_7=\alpha_3 
\end{cases}


\begin{cases} 
\alpha_4=\frac{\alpha_1}{2}\\ 
\alpha_5=\alpha_1\\ 
3\alpha_3=2\alpha_1+2\alpha_2\\ 
\alpha_3=\frac{3}{2}\alpha_1+\frac{1}{2}\alpha_2\\
\alpha_6=\frac{\alpha_2}{2}\\ 
\alpha_7=\alpha_3 
\end{cases}\to
\begin{cases} 
\alpha_4=\frac{\alpha_1}{2}\\ 
\alpha_5=\alpha_1\\ 
\alpha_2=5\alpha_1\\ 
\alpha_3=4\alpha_1\\
\alpha_6=\frac{\alpha_2}{2}\\ 
\alpha_7=\alpha_3 
\end{cases}

\begin{cases} 
\alpha_4=\frac{\alpha_1}{2}\\ 
\alpha_5=\alpha_1\\ 
\alpha_2=5\alpha_1\\ 
\alpha_3=4\alpha_1\\
\alpha_6=\frac{\alpha_2}{2}\\ 
\alpha_7=\alpha_3 
\end{cases}\to \begin{cases} 
\alpha_2=5\alpha_1\\ 
\alpha_3=4\alpha_1\\
\alpha_4=\frac{\alpha_1}{2}\\ 
\alpha_5=\alpha_1\\ 
\alpha_6=\frac{5\alpha_1}{2}\\ 
\alpha_7=4\alpha_1
\end{cases}

Al fin

\text{con }\alpha_1=2\text{tenemos} \\\\\begin{cases} 
\alpha_2=10\\ 
\alpha_3=8\\
\alpha_4=1\\ 
\alpha_5=2\\ 
\alpha_6=5\\ 
\alpha_7=8
\end{cases}\\ \\ \\
\text{Es decir:}

2\text{ KMnO}_4+10\text{ FeSO}_4+8\text{ H}_2\text{S}\text{O}_4 \longrightarrow \text{K}_2\text{SO}_4+2\text{ Mn}\text{SO}_4+5\text{ Fe}_2(\text{SO}_4)_3+8\text{ H}_2\text{O}

Entonces la EDO es

y''+y=\dfrac{\sin\left(6x-\dfrac{6x}{\pi}\arccos\left(-\frac{5}{10}\right)\right)}{2\cos{x}},~~y'(0)=y(0)=0\\ \\ \\
y''+y=\dfrac{\sin\left(6x-\dfrac{6x}{\pi}\left(\pi-\dfrac{\pi}{3}\right)\right)}{2\cos{x}}\\ \\ \\ y''+y=\dfrac{\sin\left(2x\right)}{2\cos{x}}\\ \\ \\


y''+y=\dfrac{\sin\left(2x\right)}{2\cos{x}}\\ \\ \\
\mathcal{L}\left\{y''\right\}+\mathcal{L}\left\{y\right\}=\mathcal{L}\left\{\sin x\right\}\\ \\ \\
s^2\mathcal{L}\{y\}-s~ y(0)-s^2~y'(0)+\mathcal{L}\left\{y\right\}=\mathcal{L}\left\{\sin x\right\}\\ \\ \\
s^2\mathcal{L}\{y\}+\mathcal{L}\left\{y\right\}=\dfrac{1}{s^2+1}\\ \\ \\
\mathcal{L}\{y\}=\dfrac{1}{(s^2+1)^2}


y=\dfrac{1}{2}\mathcal{L}^{-1}\left\{\dfrac{2}{(s^2+1)^2}\right\}\\ \\ \\
\boxed{~\boxed{y=\dfrac{1}{2}(\sin x-x\cos x)}~}
Perguntas interessantes