QUESTÃO 6
O conceito de função é um dos mais importantes em toda a matemática. O conceito básico de função é o seguinte: toda vez que temos dois conjuntos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. O uso de funções pode ser encontrado em diversos assuntos. Por exemplo, na tabela de preços de uma loja, a cada produto corresponde um determinado preço. Outro exemplo seria o preço a ser pago numa conta de luz, que depende da quantidade de energia consumida.
Seja A={1,2,3,4} e seja R a relação de A em A definida por “x divide y”, escrita x|y. Pode-se dizer que:
I) O conjunto R dos pares ordenados será:
II) A relação inversa será:
Alternativas
Alternativa 1:
Relação R={(1,1), (1,2), (2,2), (2,4), (3,3), (4,4)} Inversa R^(-1)={(3,1), (4,1), (2,2), (4,2), (3,3), (4,4)}
Alternativa 2:
Relação R={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)} Inversa R^(-1)={(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (3,3), (4,4)}
Alternativa 3:
Relação R={(1,1), (1,2), (1,3), (1,4), (3,3), (4,4)} Inversa R^(-1)={(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (3,3), (4,4)}
Alternativa 4:
Relação R={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4)} Inversa R^(-1)={(1,1), (2,1), (3,1), (4,1), (3,3), (4,4)}
Alternativa 5:
Relação R={(1,1), (1,2), (1,3), (1,4), (2,2), (2,4), (3,3), (4,4), (4,1), (4,2)} Inversa R^(-1)={(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (3,3), (4,4)}
guilherme943175:
conceito básico é o seguinte: toda vez que temos dois conjuntos numéricos e algum tipo de associação entre eles, que faça corresponder a todo elemento do primeiro conjunto um único elemento do segundo, ocorre uma função. Podemos afirmar que é a relação entre duas grandezas: O Domínio D(f) e a Imagem Im(f).
Soluções para a tarefa
Respondido por
7
Resposta:
alternativa 3 Relação R={(1,1), (1,2), (1,3), (1,4), (3,3), (4,4)} Inversa R^(-1)={(1,1), (2,1), (3,1), (4,1), (2,2), (4,2), (3,3), (4,4)}
Perguntas interessantes