Matemática, perguntado por Eggdoido, 1 ano atrás

questão 54 por favor S=(1/4)

Anexos:

Soluções para a tarefa

Respondido por Niiya
1
Propriedade:

\boxed{\boxed{log_{b}(a^{n})=n\cdot log_{b}(a)}}

Mudança de base (b para c):

\boxed{\boxed{log_{b}(a)=\dfrac{log_{c}(a)}{log_{c}(b)}}}
________________________________-

log_{3}(5)\cdot log_{4}(27)\cdot log_{25}(\sqrt[3]{2})

Mudando as bases para 10:

log_{3}(5)\cdot log_{4}(27)\cdot log_{25}(\sqrt[3]{2})=\dfrac{log(5)}{log(3)}\cdot\dfrac{log(27)}{log(4)}\cdot\dfrac{log(\sqrt[3]{2})}{log(25)}\\\\\\log_{3}(5)\cdot log_{4}(27)\cdot log_{25}(\sqrt[3]{2})=\dfrac{log(5)}{log(3)}\cdot\dfrac{log(3^{3})}{log(2^{2})}\cdot\dfrac{log(\sqrt[3]{2^{1}})}{log(5^{2})}\\\\\\log_{3}(5)\cdot log_{4}(27)\cdot log_{25}(\sqrt[3]{2})=\dfrac{log(5)}{log(3)}\cdot\dfrac{3\cdot log(3)}{2\cdot log(2)}\cdot\dfrac{log(2^{1/3})}{2\cdot log(5)}

Cortando log(3) e log(5):

log_{3}(5)\cdot log_{4}(27)\cdot log_{25}(\sqrt[3]{2})=\dfrac{3}{2\cdot log(2)}\cdot\dfrac{(\frac{1}{3})log(2)}{2}\\\\\\log_{3}(5)\cdot log_{4}(27)\cdot log_{25}(\sqrt[3]{2})=3\cdot\dfrac{1}{3}\cdot\dfrac{1}{2}\cdot\dfrac{1}{2}\\\\\\\boxed{\boxed{log_{3}(5)\cdot log_{4}(27)\cdot log_{25}(\sqrt[3]{2})=\dfrac{1}{4}}}

Eggdoido: cara ficou todo codificado aqui
Niiya: Recarregue a página (clique F5)
Perguntas interessantes