Questão 5 (questão teste)
A inflação anual de um país decresceu no período de sete anos. Esse fenômeno pode ser representado por uma função exponencial do tipo f(x) = a . bx, conforme o gráfico abaixo.
Determine a taxa de inflação desse país no quarto ano de declínio.
a) 100%
b) 60%
c) 10%
d) 195%
e) 450%
Soluções para a tarefa
A taxa de inflação desse país no quarto ano de declínio foi de 60% , ou seja, alternativa letra b).
Vamos aos dados/resoluções:
Podemos observar o gráfico e determinar os seguintes pontos:
x = 0 >>> f(0) = 960%
x = 7 >>> f(7) = 7,5%
Usando x = 0 para indicar o valor de " a ",
960 = a.b º
b º = 1 {que seria um número elevado a zero é 1}
a = 960
Agora que você achou "a", use x = 7 para determinar " b ";
7,5 = 960.b^7
b^7 = 7,5/960
b^7 = 1/128
b^7 = 1/2^7 {Lembrando aqui que 2^7 = 128} ;
Logo, sendo de mesmos expoentes, iremos igualar as bases, ou simplesmente calcular a raiz sétima de 1/128,
b = 1/2
A função exponencial passa a ser;
f(x) = 960.(1/2)^x
Você precisa calcular o valor da função quando o mesmo é x = 4;
f(4) = 960.(1/2)^4
f(4) = 960(1/16) {2^4 = 2(2)(2)(2) = 16} ;
f(4) = 960/16
f(4) = 60% é a resposta final.
espero ter ajudado nos estudos, bom dia :)