Matemática, perguntado por demiiKardozzo, 1 ano atrás

questao 47.... mee ajudem por favoor.....

Anexos:

Soluções para a tarefa

Respondido por OliverQuenn
1
Use a seguinte relaçao:
matriz A vs a sua matriz inversa é igual a matriz identidade dela
A.A^-1=I

  \left[\begin{array}{ccc}2&-5\\-1&3\\\end{array}\right] *  \left[\begin{array}{ccc}a11&a12\\a21&a22\\\end{array}\right] =  \left[\begin{array}{ccc}1&0\\0&1\\\end{array}\right]

resolvendo uma parte ,pois isso vai cair em dois sistema lineares. vou resolve-los por escalonamento

2a11-5a21=1  esse so repete
-a11+3a21=0 multiplica esse por 2

fica assim

2a11-5a21=1
-2a11+6a21=0
----------------------soma eles
0+a21=1
a21=1

substitui a21 em uma dessas duas relaçoes que vc acha o a11

-a11+3a21=0
-a11+3.1=0
-a11+3=0
-a11=-3
a11=3


resolvendo a segunda parte da questao da matriz

2a11-5a22=0 essa so repete
-a12+3a22=1 multiplica essa por 2

fica assim

2a11-5a22=0
-2a12+6a22=2
---------------------soma
0+a22=2
a22=2

substitui a22 em uma delas que vc acha o a11

-a12+3a22=1
-a12+3.2=1
-a12+6=1
-a12=-5
a12=5

se ja achou a matriz inversa... cara eu mandava vc multiplicar por 2 pq eu previsa que se eu multiplicasse por 2 e somasse com a outra relaçao uma incogneta sumiria. (procura na net resoluçao de sistemas lineares)

A^{-1}=  \left[\begin{array}{ccc}a11&a12\\a21&a22\\\end{array}\right]  \\  \\ A^{-1}=  \left[\begin{array}{ccc}3&5\\1&2\\\end{array}\right]

bem ta ai..eu verifiquei e tava certa oque a questao quis. Realmente akela matriz dada era a inversa.

demiiKardozzo: Obrigaadaa meesmoo....
OliverQuenn: espero que tenha ajudado é bem trabalhoso fazer essa questao nesse site kkkk
OliverQuenn: e me da 5 estrelas pq aki o barato é loco kkkk
demiiKardozzo: euu seeii ,, ii olhaa kii ainda tem mais 2 questoes :'(
OliverQuenn: conseguiu as duas?
demiiKardozzo: siimm foii facil apos sua explicacao....
OliverQuenn: hahahah quem sabe um dia viro professor.
demiiKardozzo: siimm kkkkkk
Perguntas interessantes