QUESTÃO 20) Supondo que, ao ser contaminada com corona-vírus, uma pessoa contaminasse três pessoas
no segundo dia e cada uma das três pessoas contaminasse; no terceiro dia, três outras pessoas; no quarto
dia vinte e sete pessoas estariam contaminadas e assim por diante.
Considerando-se ainda que nenhuma dessas pessoas infectadas morresse, que a quantidade de pessoas
infectadas continuasse crescendo em Progressão Geométrica; e, que ao final de um mês não havia nenhuma
pessoa infectada nesse período sem a doença, qual seria o total de pessoas infectadas após 30 dias?
Soluções para a tarefa
Resposta:
288 230 376 151 711 744 (cerca de duzentos e oitenta e oito quatrilhões de pessoas)
Explicação passo-a-passo:
Quando uma pessoa contamina outras três, o número de contaminados fica quatro (porque fica a pessoa que se contaminou e mais 3).
Então, a cada dia, o número de contaminados é 4 vezes maior:
1º dia: 1 pessoa.
2º dia: = 1*4 = 4 pessoas contaminadas
3º dia: = 4*4 = 16 pessoas contaminadas
4º dia: = 16*4 = 64 pessoas contaminadas.
Então, a fórmula geral dessa progressão é uma potência de 4 (é 4 elevado a um número).
Como no 2º dia o número de infectados é 4, então a relação entre esses valores é:
2º dia: 4¹ = 4
No 3º dia, fica 16. Então:
3º dia: 4²= 16.
E assim por diante:
4º dia: 4³=64
Então, no dia "n" fica:
nº dia:
30º dia: 288 230 376 151 711 744. (cerca de duzentos e oitenta e oito quatrilhões de pessoas infectadas)
Isso é cerca de 36 milhões de vezes o número de habitantes da Terra.