Matemática, perguntado por gestuda, 10 meses atrás

Questão 01) Quando se tem por objetivo determinar uma função primitiva partindo de uma derivada pode-se integrar a função derivada. Para funções mais simples, podemos aplicar as regras básicas de integração diretamente, no entanto, se a função for mais complexa, muitas vezes, uma função composta, é necessário utilizar técnicas mais sofisticadas, como a integração por substituição ou integração por partes. Sendo assim:


a) Calcule a integral da função:

f(x)=4 x^3/x^4 +1

Utilizando a regra da substituição, encontre a função primitiva F(x) e determine o valor da função quando x = 1 e C = 5,31.

b) Calcule a integral definida da função:

f(x) =x . e^x

Utilizando a regra da integração por partes variado de x = 0 a x = 2.


wanesa12: Alguem pode ajudar?

Soluções para a tarefa

Respondido por silvageeh
49

A função primitiva é ln(x⁴ + 1) + c e o valor da função quando x = 1 e c = 5,31 é ln(2) + 5,31; A integral da função f(x) = x.eˣ variando entre x = 0 e x = 2 é e² + 1.

a) Para calcularmos a integral da função f(x) = 4x³/(x⁴ + 1), vamos utilizar a substituição simples.

Para isso, considere que u = x⁴ + 1.

Assim, temos que du = 4x³.dx.

Dito isso, temos a seguinte integral:

∫f(x).dx = ∫du/u = ln(u) + c = ln(x⁴ + 1) + c.

Sendo x = 1 e c = 5,31, temos que:

ln(1⁴ + 1) + 5,31 = ln(2) + 5,31.

b) Para calcularmos a integral da função f(x) = x.eˣ, vamos utilizar a técnica de integração por partes.

Para isso, considere que u = x e dv = eˣ.

Então, du = dx e v = eˣ.

A integração por partes é definida por:

  • ∫u.dv = u.v - ∫v.du.

Portanto:

∫f(x).dx = x.eˣ - ∫eˣ.dx

∫f(x).dx = x.eˣ - eˣ.

Substituindo os limites de integração:

2.e² - e² - (0.e⁰ - e⁰) = e² + 1.


shorckgames: Olá Gessica, tem como me ajudar em algumas questões porfavor!
Perguntas interessantes