Quem e quando foi criado o mmc e mdc?
Soluções para a tarefa
Respondido por
2
MDC O máximo divisor comum ou MDC entre dois números inteiros a e b (frequentemente abreviada como mdc(a, b), mdc{a, b} ou (a, b)) é o maior número inteiro encontrado, que seja factor dos outros dois. Por exemplo, os divisores comuns de 12 e 18 são 1,2,3 e 6, logo mdc(12,18)=6. A definição abrange qualquer número de termos, por exemplo mdc(10,15,25,30)=5. O máximo divisor comum também pode ser representado só com parênteses. Com esta notação, dizemos que dois números inteiros a e b são primos entre si se e só se (a,b)=1.
Esta operação é tipicamente utilizada para reduzir equações a outras equivalentes:
Seja m o máximo divisor comum entre a e b, e a' e b' o resultado da divisão de ambos por m, respectivamente.
No contexto da teoria dos anéis, um máximo divisor comum é definido de forma análoga: ele é um elemento m que divide a e b, e tal que qualquer outro divisor x comum de a e b é um divisor de m. Nem sempre existe um máximo divisor comum, e nem sempre ele é único.
MMC
Dois ou mais números sempre têm múltiplos comuns a eles.
Vamos achar os múltiplos comuns de 4 e 6:
Múltiplos de 6: 0, 6, 12, 18, 24, 30,...
Múltiplos de 4: 0, 4, 8, 12, 16, 20, 24,...
Múltiplos comuns de 4 e 6: 0, 12, 24,...
Dentre estes múltiplos, diferentes de zero, 12 é o menor deles. Chamamos o 12 de mínimo múltiplo comum de 4 e 6.
O menor múltiplo comum de dois ou mais números, diferente de zero, é chamado de mínimo múltiplo comum desses números. Usamos a abreviação m.m.c.
CÁLCULO DO M.M.C.
Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30:
1º) decompomos os números em fatores primos
2º) o m.m.c. é o produto dos fatores primos comuns e não-comuns:
12 = 2 x 2 x 3
30 = 2 x 3 x 5
m.m.c (12,30) = 2 x 2 x 3 x 5
Escrevendo a fatoração dos números na forma de potência, temos:
12 = 22 x 3
30 = 2 x 3 x 5
m.m.c (12,30) = 22 x 3 x 5
O m.m.c. de dois ou mais números, quando fatorados, é o produto dos fatores
comuns e não-comuns a eles, cada um elevado ao maior expoente.
PROCESSO DA DECOMPOSIÇÃO SIMULTÂNEA
Neste processo decompomos todos os números ao mesmo tempo, num dispositivo como mostra a figura ao lado. O produto dos fatores primos que obtemos nessa decomposição é o m.m.c. desses números. Ao lado vemos o cálculo do m.m.c.(15,24,60)
Portanto, m.m.c.(15,24,60) = 2 x 2 x 2 x 3 x 5 = 120
PROPRIEDADE DO M.M.C.
Entre os números 3, 6 e 30, o número 30 é múltiplo dos outros dois. Neste caso, 30 é o m.m.c.(3,6,30). Observe:
m.m.c.(3,6,30) = 2 x 3 x 5 = 30
Dados dois ou mais números, se um deles é múltiplo de todos os outros, então
ele é o m.m.c. dos números dados.
Considerando os números 4 e 15, ques são primos entre si. O m.m.c.(4,15) é igual a 60, que é o produto de 4 por 15. Observe:
m.m.c.(4,15) = 2 x 2 x 3 x 5 = 60
Esta operação é tipicamente utilizada para reduzir equações a outras equivalentes:
Seja m o máximo divisor comum entre a e b, e a' e b' o resultado da divisão de ambos por m, respectivamente.
No contexto da teoria dos anéis, um máximo divisor comum é definido de forma análoga: ele é um elemento m que divide a e b, e tal que qualquer outro divisor x comum de a e b é um divisor de m. Nem sempre existe um máximo divisor comum, e nem sempre ele é único.
MMC
Dois ou mais números sempre têm múltiplos comuns a eles.
Vamos achar os múltiplos comuns de 4 e 6:
Múltiplos de 6: 0, 6, 12, 18, 24, 30,...
Múltiplos de 4: 0, 4, 8, 12, 16, 20, 24,...
Múltiplos comuns de 4 e 6: 0, 12, 24,...
Dentre estes múltiplos, diferentes de zero, 12 é o menor deles. Chamamos o 12 de mínimo múltiplo comum de 4 e 6.
O menor múltiplo comum de dois ou mais números, diferente de zero, é chamado de mínimo múltiplo comum desses números. Usamos a abreviação m.m.c.
CÁLCULO DO M.M.C.
Podemos calcular o m.m.c. de dois ou mais números utilizando a fatoração. Acompanhe o cálculo do m.m.c. de 12 e 30:
1º) decompomos os números em fatores primos
2º) o m.m.c. é o produto dos fatores primos comuns e não-comuns:
12 = 2 x 2 x 3
30 = 2 x 3 x 5
m.m.c (12,30) = 2 x 2 x 3 x 5
Escrevendo a fatoração dos números na forma de potência, temos:
12 = 22 x 3
30 = 2 x 3 x 5
m.m.c (12,30) = 22 x 3 x 5
O m.m.c. de dois ou mais números, quando fatorados, é o produto dos fatores
comuns e não-comuns a eles, cada um elevado ao maior expoente.
PROCESSO DA DECOMPOSIÇÃO SIMULTÂNEA
Neste processo decompomos todos os números ao mesmo tempo, num dispositivo como mostra a figura ao lado. O produto dos fatores primos que obtemos nessa decomposição é o m.m.c. desses números. Ao lado vemos o cálculo do m.m.c.(15,24,60)
Portanto, m.m.c.(15,24,60) = 2 x 2 x 2 x 3 x 5 = 120
PROPRIEDADE DO M.M.C.
Entre os números 3, 6 e 30, o número 30 é múltiplo dos outros dois. Neste caso, 30 é o m.m.c.(3,6,30). Observe:
m.m.c.(3,6,30) = 2 x 3 x 5 = 30
Dados dois ou mais números, se um deles é múltiplo de todos os outros, então
ele é o m.m.c. dos números dados.
Considerando os números 4 e 15, ques são primos entre si. O m.m.c.(4,15) é igual a 60, que é o produto de 4 por 15. Observe:
m.m.c.(4,15) = 2 x 2 x 3 x 5 = 60
Perguntas interessantes
Física,
10 meses atrás
Matemática,
10 meses atrás
Geografia,
10 meses atrás
Matemática,
1 ano atrás
Contabilidade,
1 ano atrás
Geografia,
1 ano atrás
Matemática,
1 ano atrás
Ed. Técnica,
1 ano atrás