Matemática, perguntado por marcospereira44661, 8 meses atrás

que polinômio representa a área colorida de preto da figura ?

Anexos:

anajackson123: acho q é um octógono ou um quadrilátero
nicolasoliveira2403: 9x(elevado a 2) - 1
nicolasoliveira2403: espero ter ajudado

Soluções para a tarefa

Respondido por mikaelpereirasantos1
1

Resposta:

8x² + 2x - 2.

Explicação passo-a-passo:

A área da região colorida corresponde a área do retângulo maior -- retângulo cuja largura é (3x - 1) e cujo comprimento é (3x + 1) -- menos a área do quadrado interno a este retângulo -- quadrado de lado (x - 1).

Assim, a área do retângulo é:

(3x - 1) . (3x + 1)

Aplicando a propriedade distributiva:

(3x - 1) . (3x + 1) = 9x² + 3x - 3x - 1 => 9x² - 1 -> área do retângulo.

A área de um quadrado é a medida do lado elevado ao quadrado. Desse modo, a área do quadrado interno a este retângulo é:

(x - 1)² = (x - 1) . (x - 1) = x² - x - x + 1 => x² - 2x + 1 -> área do quadrado.

Agora que já temos a área do retângulo e do quadrado, basta subtrairmos da área do retângulo a área do quadrado interno que automaticamente  iremos descobrir a área da região colorida:

(9x² - 1) - (x² - 2x + 1)

Esse sinal de menos antes da área do quadrado significa que todos os membros do polinômio que representa a área do quadrado terão seus sinais invertidos, ou seja, quem é positivo ficará negativo e que é negativo ficará positivo.

Fazendo a inversão de sinal e eliminando os parentêses, temos a seguinte expressão:

9x² - 1 - x² + 2x - 1

Resolvendo essa expressão:

9x² - 1 - x² + 2x - 1

8x² + 2x - 2 -> polinômio que representa a área da região colorida.

Portanto, o polinômio que representa a área da região colorida é 8x² + 2x - 2.

Perguntas interessantes