Quantos sao os multiplos de 4 compreendidos entre 50 e 300
Soluções para a tarefa
Respondido por
4
Olá!
Primeiro,precisamos achar o primeiro e o último número que são múltiplos de 4 dentre esta sequência.
Lembrando que um número é divisível por 4 quando os 2 últimos números formam um número divisível por 4. Exemplos:
840 = (40 é divisível por 4)
1.232 = (32 é divisível por 4)
987.624 = (24 é divisível por 4)
O primeiro múltiplo de 4 é 52.
E o último múltiplo de 4 é 300.
Então, temos uma progressão aritmética, onde:
a1 = 52
an = 300
n = ?
r = 4
Onde:
a1 = 1º termo divisível por 4
an = Último termo divisível por 4
n = Quantidade de termos da progressão aritmética (o que queremos achar)
r = razão
300 = 52 + (n - 1) . 4
300 = 52 + 4n - 4
300 = 48 + 4n
252 = 4n
n = 252 / 4
n= 63
Agora, precisamos usar a fórmula da soma dos termos:
Sn = ((a1 + an).n)) /2
Sn = (52 + 300) . 63 / 2
Sn = 352 . 63 / 2
Sn = 22176 / 2
Sn= 11088
Logo a soma dos múltiplos de 4 compreendidos entre 50 e 300 será 11088.
Espero que te ajude.
Bons estudos!
Primeiro,precisamos achar o primeiro e o último número que são múltiplos de 4 dentre esta sequência.
Lembrando que um número é divisível por 4 quando os 2 últimos números formam um número divisível por 4. Exemplos:
840 = (40 é divisível por 4)
1.232 = (32 é divisível por 4)
987.624 = (24 é divisível por 4)
O primeiro múltiplo de 4 é 52.
E o último múltiplo de 4 é 300.
Então, temos uma progressão aritmética, onde:
a1 = 52
an = 300
n = ?
r = 4
Onde:
a1 = 1º termo divisível por 4
an = Último termo divisível por 4
n = Quantidade de termos da progressão aritmética (o que queremos achar)
r = razão
300 = 52 + (n - 1) . 4
300 = 52 + 4n - 4
300 = 48 + 4n
252 = 4n
n = 252 / 4
n= 63
Agora, precisamos usar a fórmula da soma dos termos:
Sn = ((a1 + an).n)) /2
Sn = (52 + 300) . 63 / 2
Sn = 352 . 63 / 2
Sn = 22176 / 2
Sn= 11088
Logo a soma dos múltiplos de 4 compreendidos entre 50 e 300 será 11088.
Espero que te ajude.
Bons estudos!
Educwb1:
Esqueci de mencionar acima, que os múltiplos de 4 compreendidos entre 50 e 300 é 63 e a soma destes termos 11088.
Perguntas interessantes
Matemática,
10 meses atrás
Inglês,
10 meses atrás
Matemática,
1 ano atrás
Física,
1 ano atrás
Administração,
1 ano atrás
Matemática,
1 ano atrás