Matemática, perguntado por gi2222, 11 meses atrás

quantos são os anagramas da palavra CAPITULO a) que podemos formar b) que começa e termina por vogal c) que tem as letras C,A e P juntas, nessa ordem d) que tem as letras C,A e P juntas, em qualquer ordem e) que tem a letra P, em primeiro lugar, e a letra A, em segundo POR FAVOR É URGENTE

Soluções para a tarefa

Respondido por lujoclarimundo
6

Explicação passo-a-passo:

a) A palavra tem 8 letras. Então temos uma permutação de 8 letras, sem repetição. O total é 8! = 8 . 7 . 6 . 5 . 4 . 3 . 2 . 1 = 40320

b) As vogais são A, I, O e U. Primeiro vamos calcular quantos anagramas começam com a letra A:

Fixando a letra A no início, temos 3 opções de letras para ficarem no final: I, O e U, já que tem que terminar com vogal. As outras 6 letras (2 vogais que sobram e 4 consoantes, serão permutadas nos outros 6 lugares). Então, o total de anagramas iniciados com a letra A é:

1 . 6! . 3 = 2160

Os mesmos valores encontramos para os anagramas que começam com I, O e U, e terminam com vogais. Logo, a resposta da letra b é: 2160 x 4 = 8640

c) Como C, A e P estão sempre juntas e nessa ordem, é como se elas fossem uma letra só. Então teríamos uma permutação de 1 + 5 letras = 6 letras. A resposta é 6! = 720

d) As letras C, A e P juntas e em qualquer ordem: é só permutar as três letras em cada um dos 720 anagramas que encontramos na letra c. Logo, o resultado é:

720 x 3! = 720 x 6 = 4320

e) Como as letras P e A estão em posições fixadas, é como se elas nem estivessem na palavra. Basta permutar as demais letras, ou seja, 6 letras. A resposta é: 6! = 720


mathi359: A Letra E, não está correta, porque se P e A Devem estar juntas, ela não desaparece da palavra, as letras P e A se transformam em uma só letra, então, deveria ser 7 letras na permutação, P7 = 7! = 5.040
lujoclarimundo: Tá falando ¨letra P¨em primeiro lugar e letra A em segundo¨, então está dizendo que a primeira letra do anagrama tem que ser P e a segunda tem que ser A. Então essas letras estão fixadas. Se dissesse que elas estão juntas, com a letra P primeiro e a letra A depois, aí sim elas deixariam de estar fixadas. Você que entendeu errado.
mathi359: Realmente amigo, compreendi! Acabei me confundindo, peço desculpas. Tenha uma boa semana!
lujoclarimundo: Valeu amigo, estamos juntos!
Perguntas interessantes