Matemática, perguntado por rafael1102, 1 ano atrás

Quantos são os anagramas da palavra Araraquara que:

a)      começam
e terminam com a letra A?


b)      têm
2 e somente 2 letras A no início?


c)      Têm
as letras A intercaladas com as outras?

Soluções para a tarefa

Respondido por Celio
36
Olá, Rafael.

Na palavra "ARARAQUARA" temos 5 repetições da letra "A" e 3 repetições da letra "R".
Vamos utilizar, então, o Princípio Fundamental da Contagem para contar as possibilidades de permutações e dividir o resultado por  5! \cdot 3!  (5 e 3 repetições):

a)\ A--------A\\\\\ \underbrace{\underline{5}}_{A}\times\underbrace{\underline{8}\times\underline{7}\times\underline{6}\times\underline{5}\times\underline{4}\times\underline{3}\times\underline{2}\times\underline{1}}_{\text{outras letras}}\times\underbrace{\underline{4}}_{A}=\frac{5\times8!\times4}{5!3!}=\\\\=\frac{20\times8.7.6.5!}{5!.3.2.1}=20\cdot8\cdot7=1.120\text{ anagramas}


b)\ AA\underbrace{-}_{\neq A}-------\\\\ \underbrace{\underline{5}}_{A}\times\underbrace{\underline{4}}_{A}\times\underbrace{\underline{5}}_{R,R,Q,U,R}\times\underbrace{\underline{7}\times\underline{6}\times\underline{5}\times\underline{4}\times\underline{3}\times\underline{2}\times\underline{1}}_{\text{outras letras}}=\frac{5\times4\times7!\times5}{5!3!}=\\\\=\frac{100\times7.6.5!}{5!.3.2.1}=100\times7=700\text{ anagramas}


c)\ A-A-A-A-A-\text{ ou }-A-A-A-A-A\\\\ \underbrace{\underline{5}}_{A}\times\underline{5}\times\underbrace{\underline{4}}_{A}\times\underline{4}\times\underbrace{\underline{3}}_{A}\times\underline{3}\times\underbrace{\underline{2}}_{A}\times\underline{2}\times\underbrace{\underline{1}}_{A}\times\underline{1}=\frac{5!5!}{5!3!}=\frac{5.4.3!}{3!}=\\\\=20\text{ anagramas}

Para a forma _A_A_A_A_A o cálculo é análogo e chegamos a outros 20 anagramas.
Somando os 20 anagramas da forma 
a forma A_A_A_A_A_ com os 20 anagramas da forma _A_A_A_A_A temos um total de 20 + 20 = 40 anagramas.

rafael1102: valeu cara, a letra c ta diferente do gabarito, no gabarito ta 40... vc poe da uma olhada pra mim? brigadao msm
rafael1102: entendi já. temos tbm a a opção: _A_A_A_A_A
rafael1102: :)
Celio: É verdade, Rafael! Não me atentei para a opção _A_A_A_A_A. Muito bem observado. A resposta é, portanto, 20 da opção A_A_A_A_A._, mais 20 da opção _A_A_A_A_A. Total = 40 anagramas possíveis. Obrigado pela correção. Vou corrigir a solução. Um abraço. :)
Perguntas interessantes