Quantos números existem inferiores a 1000 com algarismos distintos?
Soluções para a tarefa
Respondido por
2
Números naturais inferiores a 1000 com algarismos distintos.
Nós utilizamos 10 dígitos para representar os números: {0,1,2,3,4,5,6,7,8,9}.
Lembrando que não existem números que começam com 0.
_ _ _ = x.y.z
Chamarei cada tracinho de x, y e z respectivamente
x = 9 possibilidades, visto que não existe número que começa com 0.
y = podemos utilizar o 0, porém já retiramos um número, que não pode ser repetido, portanto temos 9 algarismos.
z = podemos utilizar 8 algarismos, visando que já utilizamos 2 dos 10 números
Portanto:
x.y.z = 9.9.8 = 72.9 = 720 - 72 = 648 números.
Caso estejamos falando de números inteiros, serão infinitos!
Bjss ^^
Avalie minha resposta.
Bons estudos!
Nós utilizamos 10 dígitos para representar os números: {0,1,2,3,4,5,6,7,8,9}.
Lembrando que não existem números que começam com 0.
_ _ _ = x.y.z
Chamarei cada tracinho de x, y e z respectivamente
x = 9 possibilidades, visto que não existe número que começa com 0.
y = podemos utilizar o 0, porém já retiramos um número, que não pode ser repetido, portanto temos 9 algarismos.
z = podemos utilizar 8 algarismos, visando que já utilizamos 2 dos 10 números
Portanto:
x.y.z = 9.9.8 = 72.9 = 720 - 72 = 648 números.
Caso estejamos falando de números inteiros, serão infinitos!
Bjss ^^
Avalie minha resposta.
Bons estudos!
Perguntas interessantes
Matemática,
8 meses atrás
Física,
8 meses atrás
Matemática,
1 ano atrás
Matemática,
1 ano atrás
Biologia,
1 ano atrás
Matemática,
1 ano atrás