Quantos números de quatro algarismos distintos podem ser formados utilizando apenas algarismos ímpares
Soluções para a tarefa
Respondido por
2
Para resolver, basta fazer uma aplicação da contagem.
Como os números devem possuir 4 algarismos, temos 4 "partes"
_._._._ = total de números
Como há apenas a restrição de algarismos serem ímpares, utilizaremos números do conjunto {1,3,5,7,9}, portanto:
5.4.3.2 = 120 números
Note que para o primeiro algarismo do número podemos utilizar qualquer um dos números do conjunto, porém, como não há repetição, para o 2° algarismo temos 4 opcões, para a 3° temos 3 e para a 4° temos 2. Feito isso, basta multiplicá-los e o resultado será obtido
Como os números devem possuir 4 algarismos, temos 4 "partes"
_._._._ = total de números
Como há apenas a restrição de algarismos serem ímpares, utilizaremos números do conjunto {1,3,5,7,9}, portanto:
5.4.3.2 = 120 números
Note que para o primeiro algarismo do número podemos utilizar qualquer um dos números do conjunto, porém, como não há repetição, para o 2° algarismo temos 4 opcões, para a 3° temos 3 e para a 4° temos 2. Feito isso, basta multiplicá-los e o resultado será obtido
Perguntas interessantes