quantos multiplos de 9 ou 15 entre 100 e 10000?
Soluções para a tarefa
Respondido por
1
Tantos os múltiplos de 9 como os de 15 crescem em uma PA cuja razão é o próprio número(9 ou 15) Assim precisamos determinar inicialmente qual o primeiro e o último múltiplo de 9 e 15 entre 100 e 1000 e em seguida determinar o número de termos.
De 9:
a1 = 108
an = 999
Aplicando o termo geral:
an = a1 + (n-1)r
999 = 108 + (n-1).9
882 = 9n - 9
n = 100
De 15:
a1 = 105
an = 990
Aplicando termo geral:
990 = 105 + (n-1).15
885 = 15n - 15
15n = 900
n = 60
Porém neste caso podem haver números que são múltiplos de 9 e 15 e portanto estaríamos contando-os duas vezes.
Os múltiplos de 9 e 15 crescem numa PA cuja razão é o mmc(15;9) = 45
Assim para os múltiplos de 9 e 15:
a1 = 135
an = 990
Aplicando o termo geral:
990 = 135 + (n-1).45
885 = 45n - 45
900 = 45n
n = 20
Assim o Número N de múltiplos de 9 e 15 entre 100 e 1000 serão:
N = 100 + 60 -20
N = 140
De 9:
a1 = 108
an = 999
Aplicando o termo geral:
an = a1 + (n-1)r
999 = 108 + (n-1).9
882 = 9n - 9
n = 100
De 15:
a1 = 105
an = 990
Aplicando termo geral:
990 = 105 + (n-1).15
885 = 15n - 15
15n = 900
n = 60
Porém neste caso podem haver números que são múltiplos de 9 e 15 e portanto estaríamos contando-os duas vezes.
Os múltiplos de 9 e 15 crescem numa PA cuja razão é o mmc(15;9) = 45
Assim para os múltiplos de 9 e 15:
a1 = 135
an = 990
Aplicando o termo geral:
990 = 135 + (n-1).45
885 = 45n - 45
900 = 45n
n = 20
Assim o Número N de múltiplos de 9 e 15 entre 100 e 1000 serão:
N = 100 + 60 -20
N = 140
Perguntas interessantes
Sociologia,
9 meses atrás
Geografia,
9 meses atrás
Inglês,
9 meses atrás
Filosofia,
1 ano atrás
Matemática,
1 ano atrás
Português,
1 ano atrás