quantos lados tem um polígono cuja a soma dos ângulos internos e externos é 1980?
Soluções para a tarefa
Respondido por
3
Boa tarde!
primeiro vamos encontrar a soma dos ângulos internos sabemos que a soma dos ângulos externos de um polígono é 360° e o enunciado dar a soma dos ângulos externos e internos então se subtrair os ângulos externos da soma restará os internos
1980 -360 = Si
Si = 1620
Si = soma dos ângulos internos
n = número de lados
Si = (n-2) x 180
1620= (n-2) x 180
1620 = 180n - 360
1620+360 = 180n
1980/180= n
n =11
resposta
11 lados
primeiro vamos encontrar a soma dos ângulos internos sabemos que a soma dos ângulos externos de um polígono é 360° e o enunciado dar a soma dos ângulos externos e internos então se subtrair os ângulos externos da soma restará os internos
1980 -360 = Si
Si = 1620
Si = soma dos ângulos internos
n = número de lados
Si = (n-2) x 180
1620= (n-2) x 180
1620 = 180n - 360
1620+360 = 180n
1980/180= n
n =11
resposta
11 lados
Perguntas interessantes
Matemática,
8 meses atrás
Inglês,
8 meses atrás
Matemática,
8 meses atrás
Biologia,
1 ano atrás
Português,
1 ano atrás
Saúde,
1 ano atrás
Geografia,
1 ano atrás