Quantos anagramas formados pelas letras da palavra BRASIL em que a letra B ocupa a primeira posição, ou a letra R ocupa a segunda posição, ou a letra L ocupa a sexta posição?
Soluções para a tarefa
Explicação:
B = conjunto de permutações com B na 1ªposição
R = conjunto de permutações com R na 2ª posição
L= conjunto de permutações com L na 6ª posição
Deve-se calcular o número de elementos da união B U R U L .
n(B) = n(R) = n(L) = nº de permutações de 5 letras ,mantendo uma fixa = 5! = 5x4x3x2x1 = 120
Entretanto o total não é a soma pois há anagramas que são comuns a 2 ou aos 3 conjuntos (pertencem à essas interseções de conjuntos). Por exemplo: BRASLI pertence a B e R , BARSIL pertence a B e L , ARBSIL pertence a R e L e BRASIL pertence a B , R e L .
n(B ∩ R) = n(B ∩ L) = n(R ∩ L) = nº de permutações de 4 letras , mantendo duas fixas = 4! = 4x3x2x1 = 24.
n(B ∩ R ∩ L) = nº de permutações de 3 letras , mantendo três fixas = 3! = 3x2x1 = 6.
A total de elementos da união de 3 conjuntos pode ser calculada pela expresão:
n(B U R U L) = n(B) + n(R) + n(L) - n(B ∩ R) - n(B ∩ L - n(R ∩ L) + n(B ∩ R ∩ L)
Neste caso o total de elementos da união com os cálculos acima fica :
3 x 120 - 3 x24 + 6 = 360 -72 + 6 = 294 anagramas