Matemática, perguntado por Rocha99, 1 ano atrás

quantos anagramas da palavra VIDRAÇARIA possuem as vogais juntas e no começo?

Soluções para a tarefa

Respondido por gomescaetano
1
Rocha99, entenda que esse exercício trata sobre permutação das letras que formam a palavra vidraçaria.

A primeira coisa a se fazer é colocar as vogais juntas e no começo, lembrando que são 5 vogais.

IAAIAVDRÇR (a ordem que eu coloquei foi a ordem em que as letras aparecem na própria palavra.)

O próximo passo é tratar as vogais como um bloco único que eu chamarei de "x"

xVDRÇR

Lembre-se que as vogais não podem sair do começo da palavra, portanto, você irá permutar as consoantes e irá ignorar o bloco das vogais.
Quando você ignorar o bloco das vogais, você estará permutando somente as consoantes, ou seja, será uma permutação de 5 letras. (Porém, há a repetição de 2 letras R)

P₅ com repetição de 2 = 5! / 2! ⇒ 5 · 4 · 3 · 2 · 1 / 2 · 1 = 60

Após isso, você irá ignorar as consoantes e irá se preocupar com as vogais. Você retornará ao bloco de vogais que chamamos de "x" e irá abri-lo novamente.

x = IAAIA

Após abrí-lo, você irá permutar as vogais de dentro do bloco x. (Porém, há a repetição de 3 vogais A e duas vogais I)

P₅ com repetição de 2 e 3 = 5! / 2! · 3! ⇒ 5 · 4 / 2 · 1 = 10

Após isso, você irá MULTIPLICAR a permutação do bloco de vogais com a permutação das consoantes:

P₅ com repetição de 2 letras x P₅ com repetição de 2 e 3 letras ⇒ 10 · 60 = 600

Logo, existem 600 anagramas para a palavra VIDRAÇARIA com as vogais juntas e no início.

help508: era pra dar 600 esta no gabarito do professor , mas obrigada pela resposta
gomescaetano: Claro! Dois erros meus, me perdoe!
gomescaetano: Vou editar!
Rocha99: obrigada sz
gomescaetano: Pronto! Mil desculpas!
Rocha99: obrigadão
gomescaetano: Dnd <3
Perguntas interessantes