Matemática, perguntado por jak41, 1 ano atrás

quanto vale essa integral?

Anexos:

Soluções para a tarefa

Respondido por avengercrawl
1
Olá

Integral tripla.


\displaystyle \mathsf{ \int\limits^1_0   \int\limits^x_0  \int\limits^y_0 {\frac{y}{x}}  \, dzdydx  }

A primeira integral está em 'dz', portanto, as demais variáveis na integral, salvo a variável 'z', se tornam constantes.
Integrando em dz


\displaystyle \mathsf{ \int\limits^1_0   \int\limits^x_0  \left[\int\limits^y_0 {\frac{y}{x}}  \, dz\right]dydx  }\\\\\\\\\mathsf{ \int\limits^1_0   \int\limits^x_0  \left[ {\frac{y}{x}\cdot z}  \, \right]\bigg|^y_0dydx  }\\\\\\\\\mathsf{ \int\limits^1_0   \int\limits^x_0  \left[ {\frac{y}{x}\cdot (y)}  \, ~-~ {\frac{y}{x}\cdot (0)} \right]dydx  } \\\\\\\\\mathsf{ \int\limits^1_0   \int\limits^x_0  \frac{y^2}{x} dydx  }



Agora, a segunda integral está em dy, portanto, as demais variáveis se tornam constantes, menos o 'y'.

Integrando em dy


\displaystyle \mathsf{ \int\limits^1_0   \int\limits^x_0  \frac{y^2}{x} dydx  } \\\\\\\\\mathsf{ \int\limits^1_0 \left[  \int\limits^x_0  \frac{y^2}{x} dy\right]dx  } \\\\\\\\\mathsf{ \int\limits^1_0 \left[  \frac{y^3}{3x} \right]\bigg|^x_0dx  }  \\\\\\\\\mathsf{ \int\limits^1_0 \left[  \frac{(x)^3}{3x} ~-~  \frac{(0)^3}{3x}\right]dx  }}    \\\\\\\\\mathsf{ \int\limits^1_0 \frac{x^3}{3x}dx  }} \\\\\\\text{Simplifica} \\\\\\\mathsf{ \int\limits^1_0 \frac{x^2}{3}dx  }}



Integrando em dx




\displaystyle \mathsf{ \int\limits^1_0 \frac{x^2}{3}dx  }} \\\\\\\\\mathsf{ \left(\frac{x^3}{9} \right)\bigg|^1_0}\\\\\\\\\mathsf{\left(\frac{1^3}{9} \right)~-~\left(\frac{0^3}{9} \right)}\\\\\\\\\boxed{\mathsf{ \frac{1}{9} }}



Dúvidas? Deixe nos comentários.
Perguntas interessantes