Matemática, perguntado por radareraradar888, 10 meses atrás

Quanto é: |x² + x -3| > 2

Alguém me ajuda?

Soluções para a tarefa

Respondido por Usuário anônimo
2

Explicação passo-a-passo:

\sf x^2+x-3=0

\sf \Delta=1^2-4\cdot1\cdot(-3)

\sf \Delta=1+12

\sf \Delta=13

\sf x=\dfrac{-1\pm\sqrt{13}}{2\cdot1}=\dfrac{-1\pm\sqrt{13}}{2}

\sf x'=\dfrac{-1+\sqrt{13}}{2}~\approx1,30

\sf x"=\dfrac{-1-\sqrt{13}}{2}~\approx-2,30

\sf |~x^2+x-3~| > 2

Há duas possibilidades:

1)

\sf x^2+x-3 > 2,~para~x < -2,30~ou~x > 1,30

\sf x^2+x-3-2 > 0

\sf x^2+x-5 > 0

\sf \Delta=1^2-4\cdot1\cdot(-5)

\sf \Delta=1+20

\sf \Delta=21

\sf x=\dfrac{-1\pm\sqrt{21}}{2\cdot1}=\dfrac{-1\pm\sqrt{21}}{2}

\sf x'=\dfrac{-1+\sqrt{21}}{2}~\approx~1,79

\sf x'=\dfrac{-1-\sqrt{21}}{2}~\approx~-2,79

Temos \sf x < \dfrac{-1-\sqrt{21}}{2}~ou~x > \dfrac{-1+\sqrt{21}}{2}

2)

\sf x^2+x-3 < -2,~para~-2,30 < x < 1,30

\sf x^2+x-3+2 < 0

\sf x^2+x-1 < 0

\sf \Delta=1^2-4\cdot1\cdot(-1)

\sf \Delta=1+4

\sf \Delta=5

\sf x=\dfrac{-1\pm\sqrt{5}}{2\cdot1}=\dfrac{-1\pm\sqrt{5}}{2}

\sf x'=\dfrac{-1+\sqrt{5}}{2}~\approx~0,615

\sf x'=\dfrac{-1-\sqrt{5}}{2}~\approx~-1,615

Temos \sf \dfrac{-1-\sqrt{5}}{2} < x < \dfrac{-1+\sqrt{5}}{2}

O conjunto solução é:

\sf S=\Big\{x\in\mathbb{R}~|~ x < \dfrac{-1-\sqrt{21}}{2}~ou~\dfrac{-1-\sqrt{5}}{2} < x < \dfrac{-1+\sqrt{5}}{2}~ou~x > \dfrac{-1+\sqrt{21}}{2}\Big\}

Perguntas interessantes