Matemática, perguntado por LordeThomas, 1 ano atrás

Quanto é 3a + 2b =1
7a + 5b =0

Soluções para a tarefa

Respondido por amunhoz
2
Esse é um sistema de duas equações com duas incógnitas, para resolvê-lo precisamos montá-lo, primeiramente:
3a + 2b = 1  (equação 1)
7a + 5b = 0  (equação 2)

Isolamos o a na equação 1:
3a + 2b = 1
3a = 1 - 2b
a =  \frac{1 - 2b}{3}  (equação 3)

Substituímos o valor encontrado para a na equação 2 para encontrarmos o b:
7a + 5b = 0
7 *  \frac{1 - 2b}{3}  + 5b = 0
 \frac{7 - 14b}{3} +  \frac{15b}{3} =  \frac{0}{3}
7 - 14b + 15b = 0
15b - 14b = - 7
b = - 7

Descobrimos b, agora substituímos na equação 3 para encontrarmos a:
a =  \frac{1 - 2b}{3}
a =  \frac{1 - 2 * (- 7)}{3}
a =  \frac{1 + 14}{3}
a =  \frac{15}{3}
a = 5

Respondido por Usuário anônimo
1
Método da adição:

3a + 2b = 1   (5)
7a + 5b = 0  (- 2)

  15a + 10b = 5
- 14a - 10b = 0  (+)
a = 5

7a + 5b = 0
7a = - 5b
7.5 = - 5b
35 = - 5b ( - 1)
- 35 = 5b
5b = - 35
b = -35/5
b = - 7

Resp.: a = 5 e b = - 7
Perguntas interessantes