Matemática, perguntado por uhvaltinxx, 11 meses atrás

quantas diagonais tem o undecágono?​

Soluções para a tarefa

Respondido por princesinha1234567
0

Resposta:

44

Explicação passo-a-passo:

Undecágono: 11 lados

D = n.(n - 3)/2

D = 11 . (11 - 3)/2

D = 11 . 8 /2

D = 88/2

D = 44

Respondido por Math739
3

Após resolver os cálculos, concluímos que um Undecágono tem:

\Large\displaystyle\text{$\begin{gathered} \hookrightarrow\boxed{\boxed{\bf 44~ diagonais}}\end{gathered}$}

Para calcular o número de diagonais de um polígono usamos a fórmula:

\Large\displaystyle\text{$\begin{gathered} \sf{ d =    \dfrac{n \cdot(n - 3)}{2}    } \end{gathered}$}

Onde:

\Large\displaystyle\text{$\begin{gathered} \sf{   \begin{cases}  \sf d = diagonais \\  \sf n =n\acute{u}mero\, de\, lados  \end{cases}  } \end{gathered}$}

Substituindo n por 11 na fórmula obtemos:

\Large\displaystyle\text{$\begin{gathered} \sf{  d =  \dfrac{n \cdot(n - 3)}{2}   } \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf{  d =  \dfrac{11 \cdot(11 - 3)}{2}   } \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf{   d =  \dfrac{11 \cdot8}{2}  } \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf{   d =  \dfrac{88}{2}  } \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf{  d = 44  } \end{gathered}$}

Perguntas interessantes