Matemática, perguntado por GustavoYoshi, 10 meses atrás

Quantas diagonais distintas se podem traçar em um
polígono regular cujos ângulos internos meçam 1350?
a) 19
b) 22
c) 23
d) 20​

Soluções para a tarefa

Respondido por Usuário anônimo
1

Explicação passo-a-passo:

Número de lados

O ângulo interno de um polígono regular de n lados mede:

\sf a_i=\dfrac{(n-2)\cdot180^{\circ}}{n}

Assim:

\sf \dfrac{(n-2)\cdot180^{\circ}}{n}=135^{\circ}

\sf (n-2)\cdot180=135n

\sf 180n-360=135n

\sf 180n-135n=360

\sf 45n=360

\sf n=\dfrac{360}{45}

\sf n=8

Esse polígono tem 8 lados

Diagonais

O número de diagonais de um polígono convexo de n lados é dado por:

\sf d=\dfrac{n\cdot(n-3)}{2}

\sf d=\dfrac{8\cdot(8-3)}{2}

\sf d=\dfrac{8\cdot5}{2}

\sf d=\dfrac{40}{2}

\sf \red{d=20}

Letra D

Perguntas interessantes