ENEM, perguntado por lavinyasonaly1887, 11 meses atrás

Quando uma sequência possui um termo inicial e uma regra de formação ou lei de formação, é possível representar um termo dessa sequência conhecendo-se seu antecessor. Essa forma de apresentação da sequência é conhecida como relação de recorrência. Já a fórmula do termo geral fornece os termos da sequência em função de n ∈ {1,2,3,...}. Seja então a sequência infinita (1, 2, 5, 10, 17, 26,...).

Soluções para a tarefa

Respondido por TaiemiPandauai
1

Resposta:

Uma sequência numérica é um conjunto em que os números estão em alguma ordem. No caso da PA, o que determina essa ordem é a razão. A sequência numérica abaixo é uma PA. Observe:

(1, 2, 3, 4, 5, 6, 7, 8, 9, …)

A diferença entre dois termos consecutivos quaisquer (razão) é 1. As reticências indicam que a lista de números continua, ou seja, o próximo termo sempre será igual ao anterior somado com a razão 1.(1, 2, 3, 4, 6, 7, 8, 9, 11, …)

Esse exemplo não é uma PA, pois a diferença entre o primeiro e o segundo termo é igual a 1, mas a diferença entre o quinto e o quarto termo é igual a 2.

Assim, razão é o número a que cada termo deve ser adicionado para obter o próximo.

Termo geral de uma PA

A partir da conclusão anterior, podemos começar a pensar em uma maneira de obter qualquer termo de uma PA.

Considere que primeiro termo de uma PA é a1 e os seguintes são a2, a3, …

Antes de mais nada, observe que as duas progressões aritméticas a seguir possuem a mesma razão:

A = (1, 5, 9, 13, …)

B = (2, 6, 10, 14, …)

Entretanto, o quarto termo dessas PAs é diferente, pois a4 = 13 e b4 = 14. Isso acontece porque o primeiro termo dessas progressões é diferente. Dessa maneira, o primeiro termo influencia o valor do termo que queremos encontrar, que será representado por an.

Sabendo disso, escreveremos alguns termos da primeira PA em função do primeiro. Observe:

a1 = 1

a2 = 5 = 1 + 4 = a1 + r

a3 = 9 = 1 + 8 = a1 + 2r

a4 = 13 = 1 + 12 = a1 + 3r

Observe apenas a parte inicial e final das igualdades:

a1 = 1

a2 = a1 + r

a3 = a1 + 2r

a4 = a1 + 3r

O número que multiplica a razão sempre é uma unidade menor que a posição do termo que estamos calculando. Por isso, podemos escrever as seguintes expressões:

a1 = 1

a2 = a1 + r = a1 + (2 – 1)r

a3 = a1 + 2r = a1 + (3 – 1)r

a4 = a1 + 3r = a1 + (4 – 1)r

Dessa maneira, podermos imaginar que um termo qualquer (an) é obtido pela soma do primeiro termo (a1) com o produto entre n – 1 e r. Assim, a fórmula do termo geral de uma PA é a seguinte:

an = a1 + (n – 1)r

Testando a fórmula

Note que essa fórmula necessita de três informações para ser utilizada: a posição do termo que se quer descobrir, representada pela letra n; o primeiro termo da PA e a sua razão. Observe o exemplo a seguir, que será resolvido de duas maneiras diferentes.

→ Qual o décimo termo da PA (2, 4, 6, …)?

Para encontrar o décimo termo dessa PA, basta continuar somando a razão ao último termo até encontrá-lo. A PA obtida será: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20...

Utilizando a fórmula do termo geral de uma PA, teremos:

an = a1 + (n – 1)r

a10 = 2 + (10 – 1)·2

a10 = 2 + (9)·2

a10 = 2 + 18

a10 = 20

Exemplo:

Calcule o 500º termo da PA (2, 5, …).

O primeiro termo dessa PA é 2, e a razão é 3. Na fórmula do termo geral, teremos:

an = a1 + (n – 1)r

a500 = 2 + (500 – 1)·3

a500 = 2 + (499)·3

a500 = 2 + 1497

a500 = 1499

Perguntas interessantes