Quando um evento é composto por n etapas sucessivas e independentes, de tal forma que as possibilidades da primeira etapa é x e as possibilidades da segunda etapa é y, e da terceira é z, consideramos então que o número total de possibilidades de o evento ocorrer é dado pelo produto x . y . z.
Exemplo: Quantos números são possíveis formar com dois ou três algarismos dispondo dos algarismos 1, 2, 3, 4 e 5?
Com dois algarismos: 5 . 4 = 20
Com três algarismos: 5 . 4 . 3 = 60
Da condição ou, precisamos somar 20 + 60 = 80
Logo, são possíveis formar 80 números com dois ou três algarismos dispondo dos algarismos 1, 2, 3, 4 e 5.
Sendo assim, quantos números naturais de três ou quatro algarismos distintos podem ser formados dispondo dos algarismos 4, 5, 6, 7, 8 e 9?
Soluções para a tarefa
Respondido por
7
→
→
A quantidade total de números é:
→
A quantidade total de números é:
Rosana2014:
Obrigado Lamacch pela sua ajuda.
Perguntas interessantes