Matemática, perguntado por jvltc2002, 6 meses atrás

Qual o volume de um cubo que a aresta mede (2x +1)?

Soluções para a tarefa

Respondido por CyberKirito
1

\Large\boxed{\begin{array}{l}\underline{\rm Volume~do~cubo~de~aresta~\ell}\\\sf V=\ell^3\end{array}}

\Large\boxed{\begin{array}{l}\sf \ell=2x+1\\\sf V=\ell^3\\\sf V=(2x+1)^3\\\sf V=(2x)^3+3\cdot(2x)^2\cdot1+3\cdot2x\cdot 1^2+1^3\\\sf V= 8x^3+3\cdot4x^2+6x+1\\\sf V=8x^3+12x^2+6x+1\end{array}}

Respondido por solkarped
2

✅ Após ter realizado todos os cálculos concluímos que o volume do cubo é:

   \large\displaystyle\text{$\begin{gathered}V = 8x^{3} + 12x^{2} + 6x + 1 \end{gathered}$}

O volume do cubo é o cubo da medida da aresta, ou seja:

                  \large\displaystyle\text{$\begin{gathered}V = a^{3} \end{gathered}$}

Se a medida da aresta é:

                 \large\displaystyle\text{$\begin{gathered}a = 2x + 1 \end{gathered}$}

Então:

        \large\displaystyle\text{$\begin{gathered}V = (2x + 1)^{3} \end{gathered}$}

            \large\displaystyle\text{$\begin{gathered}= (2x + 1)\cdot(2x + 1)\cdot(2x + 1) \end{gathered}$}

           \large\displaystyle\text{$\begin{gathered}= (4x^{2} + 4x + 1)\cdot(2x + 1) \end{gathered}$}

           \large\displaystyle\text{$\begin{gathered}= 8x^{3} + 12x^{2} + 6x + 1 \end{gathered}$}

✅ Portanto, o volume do cubo é:

      \large\displaystyle\text{$\begin{gathered}V = 8x^{3} + 12x^{2} + 6x + 1 \end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/50225996
  2. https://brainly.com.br/tarefa/49394362
  3. https://brainly.com.br/tarefa/49744679
  4. https://brainly.com.br/tarefa/49325003
  5. https://brainly.com.br/tarefa/49008932
  6. https://brainly.com.br/tarefa/48530159
  7. https://brainly.com.br/tarefa/48095363        
Anexos:

solkarped: Bons estudos!!! Boa sorte!!!
Perguntas interessantes