Matemática, perguntado por coelho84, 1 ano atrás

qual o valor do determinante da matriz. obs: aplique teorema de Laplace
1 \:   \:  \:  \:  \:  \: \: 0 \:  \ \:  \:  \:  \:  \:  \: 2 \:  \:  \:  \: 0 \\  \: 3 \:  \:  - 2 \:  \:  \:  \:  \:  \:  \:  \:1 \:  \: \:  5 \\ 6 \:  \:  \:  \:  \:  \:  \:  \: 0 \:  \:  - 1 \:  \:  \:  \: 4 \\  - 5 \:  \:  \:  \:  0 \:  \:  \:  \:  \:  \:  \:  \: 3 \:  \:  \:  \: 2
a)12
b)-60
c)156
d)-78​

Soluções para a tarefa

Respondido por CyberKirito
6

\mathtt{A=\begin{vmatrix}1&0&2&0\\3&-2&1&5\\6&0&-1&4\\-5&0&3&2\end{vmatrix}}

\mathtt{det~A=a_{11}.A_{11}+a_{12}.A_{12}+a_{13}.A_{13}+a_{14}.A_{14}}\\\mathtt{a_{11}A_{11}+0.A_{12}+a_{13}.A_{13}+0.A_{14}}\\\mathtt{a_{11}.A_{11}+a_{13}.A_{13}}

\mathtt{A_{11}={(-1)}^{1+1}.\begin{vmatrix}-2&1&5\\0&-1&4\\0&3&2\end{vmatrix}} \\\mathtt{A_{11} =  - 2( - 2 - 12) = 28}

\mathtt{A_{13}={(-1)}^{1+3}.\begin{vmatrix}3& - 2&5\\6&0&4\\ - 5&0&2\end{vmatrix}} \\\mathtt{A_{13} = 2(12 + 20) = 64 }

\mathtt{det~A=1.28+2.64=28+128=156}

\huge\boxed{\boxed{\mathtt{\maltese~~Alternativa~c}}}

Perguntas interessantes