Matemática, perguntado por jsp10, 1 ano atrás

qual o valor de x na questao ?

(5^x+1)+5^x+(5^x-1)= 775

Soluções para a tarefa

Respondido por albertrieben
1
Ola jsp

5^(x + 1) + 5^x + 5^(x - 1) = 775

5*5^x + 5^x + 5^x/5 = 775 

25*5^x + 5*5^x + 5^x = 5*775 

31*5^x = 3875 

5^x = 3875/31 = 125

5^x = 5^3

x = 3


Respondido por korvo
1
Ae,

use as propriedades da exponenciação:


\mathsf{5^{x+1}+5^x+5^{x-1}=775}\\
\mathsf{5^x\cdot5^1+5^x+5^x\cdot5^{-1}=775}\\\\
\mathsf{5\cdot5^x+5^x+ \dfrac{1}{5} \cdot5^x=775}\\\\
\mathsf{5^x~em~evidencia:}\\\\
\mathsf{5^x\cdot\left(5+1+ \dfrac{1}{5} \right)=775}\\\\
\mathsf{5^x\cdot\left( \dfrac{31}{5}\right)=775 }\\\\
\mathsf{5^x\cdot31=775\cdot5}\\
\mathsf{5^x\cdot31=3.875}\\\\
\mathsf{5^x= \dfrac{3.875}{31} }\\\\
\mathsf{5^x=125}\\
\mathsf{5^x=5^3}\\
\mathsf{\not5^x=\not5^3}\\\\
~~~\mathsf{x=3}\\\\
\Large\boxed{\mathsf{S=\{3\}}}

Tenha ótimos estudos ;P
Perguntas interessantes