Qual o valor de A, sabendo que A=
Soluções para a tarefa
Respondido por
2
Vamos lá.
Veja, Noah, que a resolução é simples.
Vamos tentar fazer tudo passo a passo para um melhor entendimento.
i) Pede-se o valor de "A" sabendo-se que ele faz parte da seguinte expressão:
A = 16⁰ʼ²⁵ ------- note que 0,25 = 1/4. Então, substituindo, teremos;
A = 16¹/⁴ ------ note que K¹/ⁿ = ⁿ√(K¹) = ⁿ√(K) . (I) .
ii) Assim, tendo a relação vista na expressão (I) acima como parâmetro, então se temos que: A = 16¹/⁴ iremos ter isto:
A = ⁴√(16) ----- note que 16 = 2⁴ . Assim, ficaremos com:
A = ⁴√(2⁴) ----- como o "2" está elevado à quarta potência, então ele sai de dentro da raiz índice quatro (raiz quarta), com o que ficaremos apenas com:
A = 2 <--- Esta é a resposta. Ou seja, este é o valor pedido de "A".
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Veja, Noah, que a resolução é simples.
Vamos tentar fazer tudo passo a passo para um melhor entendimento.
i) Pede-se o valor de "A" sabendo-se que ele faz parte da seguinte expressão:
A = 16⁰ʼ²⁵ ------- note que 0,25 = 1/4. Então, substituindo, teremos;
A = 16¹/⁴ ------ note que K¹/ⁿ = ⁿ√(K¹) = ⁿ√(K) . (I) .
ii) Assim, tendo a relação vista na expressão (I) acima como parâmetro, então se temos que: A = 16¹/⁴ iremos ter isto:
A = ⁴√(16) ----- note que 16 = 2⁴ . Assim, ficaremos com:
A = ⁴√(2⁴) ----- como o "2" está elevado à quarta potência, então ele sai de dentro da raiz índice quatro (raiz quarta), com o que ficaremos apenas com:
A = 2 <--- Esta é a resposta. Ou seja, este é o valor pedido de "A".
É isso aí.
Deu pra entender bem?
OK?
Adjemir.
Noooah:
Ai meu deus muito obrigado
Perguntas interessantes
Inglês,
9 meses atrás
Artes,
9 meses atrás
Ed. Física,
9 meses atrás
Inglês,
1 ano atrás
Matemática,
1 ano atrás
Saúde,
1 ano atrás
Sociologia,
1 ano atrás