Matemática, perguntado por guirothbarthlima, 9 meses atrás

Qual o valor da expressão? (escreva a resposta por extenso)

Anexos:

andremendessilvaalme: judvoevvbaidoscihwabajncjjOQIJEIWHVCYGEGgdygsugibxbxxjxxudxhaosjccgccgcucg´podéwide/93fvf5v5f6vaÇ
andremendessilvaalme: DV;LVKJIBHHBVFWZRCJMK,LÇ~;]],TRDESWT8YUIOYTFRDE323E45POIUYTREWEFRGTHYJUKILOÇP~.,MNB GTRF;ÇLKJHGFDASDFGHJKLOÇsdfyujiklkjhgfdsasdfm,mmj´9pç.o,udxfvbgnhnjmbhçjoy2365879hy6856re4t8f696b+hgfdz6vb69+v6+9b8vn5cxvczx3vb+nbv98cvx5v+b9v6c6n9* 865x3
andremendessilvaalme: UCBgfdsDFTGYUKL8J5HGFDS6ER/YQRTYJFDNBHVGCFXDZS\ZDXTYM,UYTFRDESWAERTYJKLZX
andremendessilvaalme: CFSHRJK/96BV3C2S5653212HN0BC1CXZ\56ZXC32B21 C♦YXAF6G32G21VC5XZ8
andremendessilvaalme: vOFVEJK,MMJKIJBBNMNJVCVRDXVCGMNJKLK,MMNBHHGVCXDSRTL,MJKLJNBNCBSDYGVZSDF7UYTXDFGNOLKNHJLKJVHGVHCGXSEY6TFSDERYFGYTYHJKJHJBJGGHCGFSESDARTYRGFFTYHHGNJKLLNJHIOBVCFDTFXDFRTFYTUJHJHGUUHTYUHHYUIJHYUIUHJGUYIGHYUHHGUYFYYTS8T

Soluções para a tarefa

Respondido por Makaveli1996
2

Oie, Td Bom?!

 =  -  \sin( \frac{ - 7}{4}\pi )  +  \cos(780°)  -  \cos(405°)  +  \sin( \frac{13}{6} \pi)

  • Calculando cada expressão separadamente:

 -  \sin( \frac{ - 7}{4}\pi )  =  -  \sin( -  \frac{7}{4} \pi)  =  -  \sin(  - \frac{7\pi}{4} )

 \cos(780°)  =  \cos(780° \: . \:  \frac{\pi}{180°} )  =  \cos( \frac{13\pi}{3} )

 -  \cos(405°)  =  -  \cos(405° \: . \:  \frac{\pi}{180°} )  =  -  \cos( \frac{9\pi}{4} )

 \sin( \frac{13}{6}\pi )  =  \sin( \frac{13\pi}{6} )

➛Continuando...

 =  -  \sin( -  \frac{7\pi}{4} )  +  \cos( \frac{13\pi}{3} )  -  \cos( \frac{9\pi}{4} )  +  \sin( \frac{13\pi}{6} )

  • Calculando cada expressão separadamente:

  \sin( -  \frac{7\pi}{4} )  =   -   \sin( \frac{7\pi}{4} )  =  -  ( -  \frac{ \sqrt{2} }{2} ) =  \frac{ \sqrt{2} }{2}

 \cos( \frac{13\pi}{3} )  =  \cos( \frac{\pi}{3} + 2 \: . \: 2\pi )  =  \cos( \frac{\pi}{3} )  =  \frac{1}{2}

 \cos( \frac{9\pi}{4} )  =  \cos( \frac{\pi}{4}  + 2\pi)  =  \cos( \frac{\pi}{4} )  =  \frac{ \sqrt{2} }{2}

 \sin( \frac{13\pi}{6} )  =  \sin( \frac{\pi}{6} + 2\pi )  =  \sin( \frac{\pi}{6} )  =  \frac{1}{2}

➛Continuando...

 =  -  \frac{ \sqrt{2} }{2}  +  \frac{1}{2}  -  \frac{ \sqrt{2} }{2}  +  \frac{1}{2}

 =  \frac{ -  \sqrt{2}  -  \sqrt{2} }{2}  +  \frac{1 + 1}{2}

 =  \frac{ - 2 \sqrt{2} }{2}  +  \frac{2}{2}

 =  -  \sqrt{2}  + 1

≈0,41424...

Att. Makaveli1996


jovemcebolinha: Nossa! Parabéns
jovemcebolinha: pela resposta
geovannasantos1515: oi pode me ajudar
jovemcebolinha: Vlw
Perguntas interessantes