Qual o trigésimo termo da P.A. (2,5,8,11,14,...)?
Soluções para a tarefa
a30= a1+(n-1)r
a2-a1=r
5-2=r--- r=3
a30= 2+(30-1).3
a30= 2+29.3
a30=2+87
a30= 89
Olá! Segue a resposta com algumas explicações.
(I)Interpretação do problema:
Da P.A. (2, 5, 8, 11, 14,...), tem-se:
a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;
b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 2
c)trigésimo termo (a₃₀): ?
d)número de termos (n): 30 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 30ª), equivalente ao número de termos.)
e)Embora não se saiba o valor do trigésimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem e, para que isso aconteça, necessariamente se deve somar um termo positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.
===========================================
(II)Determinação da razão (r) da progressão aritmética:
Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.
r = a₂ - a₁ ⇒
r = 5 - 2 ⇒
r = 3 (Razão positiva, conforme prenunciado no item e acima.)
===========================================
(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A, para obter-se o trigésimo termo:
an = a₁ + (n - 1) . r ⇒
a₃₀ = a₁ + (n - 1) . (r) ⇒
a₃₀ = 2 + (30 - 1) . (3) ⇒
a₃₀ = 2 + (29) . (3) ⇒ (Veja a Observação 2.)
a₃₀ = 2 + 87 ⇒
a₃₀ = 89
Observação 2: Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).
Resposta: O trigésimo termo da P.A.(2, 5, 8, 11, ...) é 89.
=======================================================
DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA
→Substituindo a₃₀ = 89 fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o trigésimo termo realmente corresponde ao afirmado:
an = a₁ + (n - 1) . r ⇒
a₃₀ = a₁ + (n - 1) . (r) ⇒
89 = a₁ + (30 - 1) . (3) ⇒
89 = a₁ + (29) . (3) ⇒
89 = a₁ + 87 ⇒ (Passa-se 87 ao 1º membro e altera-se o sinal.)
89 - 87 = a₁ ⇒
2 = a₁ ⇔ (O símbolo ⇔ significa "equivale a".)
a₁ = 2 (Provado que a₃₀ = 89.)
→Veja outras tarefas relacionadas à progressão aritmética e resolvidas por mim:
https://brainly.com.br/tarefa/20035193
https://brainly.com.br/tarefa/25406318
https://brainly.com.br/tarefa/20035310
https://brainly.com.br/tarefa/3284546
https://brainly.com.br/tarefa/657280
https://brainly.com.br/tarefa/10631209
https://brainly.com.br/tarefa/5952986
https://brainly.com.br/tarefa/23130744
https://brainly.com.br/tarefa/9717100