Matemática, perguntado por Usuário anônimo, 1 ano atrás

Qual o trigésimo termo da P.A. (2,5,8,11,14,...)?

Soluções para a tarefa

Respondido por BiiiiaSantos
24


a30= a1+(n-1)r

a2-a1=r

5-2=r--- r=3

a30= 2+(30-1).3

a30= 2+29.3

a30=2+87

a30= 89


Usuário anônimo: Muito obrigada! XD
Respondido por viniciusszillo
6

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da P.A. (2, 5, 8, 11, 14,...), tem-se:

a)progressão aritmética (P.A.) é uma sequência numérica em que cada termo, à exceção do primeiro, é o resultado do antecessor acrescido (somado) de um valor constante, chamado de razão;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição: 2

c)trigésimo termo (a₃₀): ?

d)número de termos (n): 30 (Justificativa: Embora a PA seja infinita, para o cálculo de um determinado termo, é feito um "corte" nesta PA infinita, de modo a considerar a posição que o termo ocupa (no caso, 30ª), equivalente ao número de termos.)

e)Embora não se saiba o valor do trigésimo termo, apenas pela observação dos dois primeiros termos da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos crescem e, para que isso aconteça, necessariamente se deve somar um termo positivo, a razão, a um termo qualquer) e o termo solicitado igualmente será maior que zero.

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒

r = 5 - 2 ⇒

r = 3   (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A, para obter-se o trigésimo termo:

an = a₁ + (n - 1) . r ⇒

a₃₀ = a₁ + (n - 1) . (r) ⇒

a₃₀ = 2 + (30 - 1) . (3) ⇒

a₃₀ = 2 + (29) . (3) ⇒         (Veja a Observação 2.)

a₃₀ = 2 + 87 ⇒

a₃₀ = 89

Observação 2:  Foi aplicada na parte destacada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam sempre em sinal de positivo (+).

Resposta: O trigésimo termo da P.A.(2, 5, 8, 11, ...) é 89.

=======================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo a₃₀ = 89 fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o trigésimo termo realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

a₃₀ = a₁ + (n - 1) . (r) ⇒

89 = a₁ + (30 - 1) . (3) ⇒

89 = a₁ + (29) . (3) ⇒

89 = a₁ + 87 ⇒       (Passa-se 87 ao 1º membro e altera-se o sinal.)

89 - 87 = a₁ ⇒  

2 = a₁ ⇔                (O símbolo ⇔ significa "equivale a".)

a₁ = 2                     (Provado que a₃₀ = 89.)

→Veja outras tarefas relacionadas à progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/20035193

https://brainly.com.br/tarefa/25406318

https://brainly.com.br/tarefa/20035310

https://brainly.com.br/tarefa/3284546

https://brainly.com.br/tarefa/657280

https://brainly.com.br/tarefa/10631209

https://brainly.com.br/tarefa/5952986

https://brainly.com.br/tarefa/23130744

https://brainly.com.br/tarefa/9717100

Perguntas interessantes