Matemática, perguntado por AliceAraujo123, 1 ano atrás

qual o resultado da soma pela diferença
(x2y3/z + 5/6).(x2y3/z - 5/6)


Sashimi: Creio que seja essa ... antes, só uma pergunta:
x2y3 seria x²y³?
AliceAraujo123: sim

Soluções para a tarefa

Respondido por Sashimi
6
Utilizando a mesma propriedade teremos:

 (\frac{ x^{2}  y^{3} }{z}+ \frac{5}{6} )*( \frac{ x^{2}  y^{3} }{z}- \frac{5}{6}) =( \frac{ x^{2}  y^{3} }{z})² -  (\frac{5}{6} )² =   \frac{ x^{4} y^{6}  }{ z^{2} } -  \frac{25}{36}

Se não for isso avise
  \frac{12 a^{6}  b^{9}  c^{4} }{ -9a^{8}  b^{7}  c^{6} } =  \frac{-4 b^{2}  }{3a^{2}  c^{2} }

 \frac{14 a^{2}  - 7ax}{10ay - 5xy} =  \frac{7a(2a-x)}{5y(2a-x)}= \frac{7a}{5y}

 \frac{12 a^{2} xy}{6ab-4 a^{2} c} =  \frac{12 a^{2} xy}{2a(3b-2ac)}= \frac{6 a xy}{(3b-2ac)}

 \frac{x^{2} -16 y^{2}}{8ay-2ax}  = \frac{(x-4y)(x+4y)}{2a(4y-x)} =  \frac{(x-4y)(x+4y)}{-2a(x-4y)} =  \frac{(x+4y)}{-2a}= \frac{-x-4y}{2a}

 \frac{ a^{2} -2a+1}{ a^{2} -1} =  \frac{(a-1)(a-1)}{(a-1)(a+1)} =  \frac{a-1}{a+1}

 \frac{ a^{2} (x+y)}{a x^{2} -a y^{2} } =  \frac{a^{2} (x+y)}{a(x^{2} - y^{2})}  =  \frac{a^{2} (x+y)}{a(x-y)(x+y)} =  \frac{a}{(x-y)}

 \frac{-2 a^{6} }{4 a^{2} b^{3}-2a b^{2}   } =  \frac{-2 a^{6}}{2a b^{2} (2ab-1)}=   \frac{-a^{5} }{b^{2} (2ab-1)}

 \frac{ a^{2} +ab}{ a^{2} -ab} =  \frac{a(a+b)}{a(a-b)} =  \frac{a+b}{a-b}

 \frac{ x^{2} +2ax+ a^{2} }{mx+ma}= \frac{(x+a)(x+a)}{m(x+a)}  =  \frac{x+a}{m}


 \frac{ a^{2} +a}{ a^{2} -9} + \frac{2}{a-3} + \frac{2}{a+3} =  \frac{ a^{2} +a}{(a+3)(a-3)}+ \frac{2(a+3)}{(a+3)(a-3)} + \frac{2(a-3)}{(a+3)(a-3)}=  \frac{ a^{2} +a+2a+6+2a-6}{(a+3)(a-3)}= \frac{a^{2}+5a}{ a^{2} -9}

 \frac{3 x^{2} +3}{3x-3} - \frac{2x}{x-1} =  \frac{3( x^{2} +1)}{3(x-1)} - \frac{2x}{x-1} = \frac{x^{2} +1}{x-1} - \frac{2x}{x-1}= \frac{ x^{2} -2x+1}{x-1} = \frac{ (x-1)(x-1)}{x-1} = x-1

 \frac{a+b}{a-b} + \frac{a-2b}{a+b} =  \frac{(a+b)(a+b)}{(a+b)(a-b)} + \frac{(a-b)(a-2b)}{(a+b)(a-b)} = =  \frac{ a^{2} +2ab+ b^{2} +a^{2}-3ab+2 b^{2}  }{(a+b)(a-b)}=  \frac{ 2a^{2} -3ab+3 b^{2}  }{ a^{2} - b^{2} }

 \frac{x-y}{y} + \frac{x+y}{x} + \frac{ x^{2} -y^{2}}{2xy} = \frac{ 2 x^{2} -2xy}{2xy}+\frac{ 2xy+2 y^{2} }{2xy}+\frac{ x^{2} -y^{2}}{2xy}= \frac{ 2 x^{2} -2xy+2xy+2 y^{2}+x^{2} -y^{2}}{2xy}} = \frac{ 3x^{2} +y^{2}}{2xy}

 \frac{2}{x+1} + \frac{3}{ x^{2} +x} + \frac{1}{x}= \frac{2x}{x(x+1)} + \frac{3}{ x(x+1)} + \frac{x+1}{x(x+1)} = \frac{3x+4}{ x^{2} +x}

 \frac{3a}{x} - \frac{5a}{4x}+ \frac{7a}{2x} =  \frac{4*3a}{4x}- \frac{5a}{4x}+ \frac{2*7a}{4x} =  \frac{12a-5a+14a}{4x}= \frac{21a}{4x}

AliceAraujo123: 3x2 + 3/ 3x - 3 - 2x/ x-1
AliceAraujo123: a+b/ a-b+ a- 2b/ a+b
AliceAraujo123: x- y / y+ x+y/ x + x2 - y2/ 2xy
Sashimi: Pronto
AliceAraujo123: continua efetuando....
AliceAraujo123: 2/x+1 + 3/x2+x+1/x
AliceAraujo123: 3a/x - 5a/4x+7a/2x
Sashimi: Pronto, e vou parando aqui por hoje (preciso dormir)
AliceAraujo123: bllz
AliceAraujo123: vlw ae
Perguntas interessantes