Matemática, perguntado por rofajin645, 10 meses atrás

qual o resultado ?!!

Anexos:

Soluções para a tarefa

Respondido por Menelaus
2

x² + x - 6 = (x-2)(x+3)

1/(x-2) + (x-7)/(x-2)(x+3)

[(x+3) + (x-7)]/(x-2)(x+3)

(2x-4)/(x-2)(x+3)

2(x-2)/(x-2)(x+3)

2/(x+3)

lim x->2 2/(x+3) = 2/(2+3) = 2/5

Resposta: 2/5

Respondido por Armandobrainly
2

Resposta:

\boxed{0,4}

Explicação passo-a-passo:

 \lim_{x \to 2} ( \frac{1}{x - 2}  +  \frac{x - 7}{ {x}^{2} + x - 6 } )

\lim_{x\to  {2}^{ - } }( \frac{1}{x - 2}  +  \frac{x - 7}{ {x}^{2} + x - 6 } ) \\ \lim_{x \to  {2}^{ + } }( \frac{1}{x - 2}  +  \frac{x - 7}{ {x}^{2} + x - 6 } )

1° vou resolver a de cima:

\lim_{x \to  {2}^{ - } } ( \frac{1}{x - 2} ) \\ \lim_{x \to  {2}^{ - } } ( \frac{x - 7}{ {x}^{2}  + x - 6} )

 -   \infty  \\  +  \infty

\lim_{x \to  {2}^{ - } } ( \frac{1}{x - 2}  +  \frac{x - 7}{ {x}^{2}  + x - 6} )

\lim_{x \to  {2}^{ - } } ( \frac{1}{x - 2}  +  \frac{x - 7}{ {x}^{2}  + 3x - 2x - 6} )

\lim_{x \to  {2}^{ - } } ( \frac{1}{x - 2}  +  \frac{x - 7}{ x \times (x + 3) - 2x - 6} )

\lim_{x \to  {2}^{ - } } ( \frac{1}{x - 2}  +  \frac{x - 7}{x \times (x + 3) - 2(x + 3)} )

\lim_{x \to  {2}^{ - } } ( \frac{1}{x - 2}  +  \frac{x - 7}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{ - } } ( \frac{x + 3 + x - 7}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{ - } } ( \frac{2x + 3 - 7}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{ - } } ( \frac{2x - 4}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{ - } } ( \frac{2(x - 2)}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{ - } } ( \frac{2}{x + 3} )

 \frac{2}{2 + 3}

\boxed{ \frac{2}{5} }

Agora vamos fazer a 2°:

\lim_{x \to  {2}^{  +  } } (  \frac{1}{x - 2}  +  \frac{x - 7}{ {x}^{2} + x - 6 } )

\lim_{x \to  {2}^{  +  } } ( \frac{1}{x - 2} ) \\ \lim_{x \to  {2}^{  +  } } ( \frac{x - 7}{ {x}^{2} + x - 6 } )

 +  \infty \\  -  \infty

\lim_{x \to  {2}^{  +  } } ( \frac{1}{x - 2}  +  \frac{x -7 }{ {x}^{2} + x - 6 } )

\lim_{x \to  {2}^{  +  } } ( \frac{1}{x - 2}  +  \frac{x - 7}{ {x}^{2}  + 3x - 2x - 6} )

\lim_{x \to  {2}^{  +  } } ( \frac{1}{x - 2}  +  \frac{x - 7}{x \times (x + 3) - 2x - 6} )

\lim_{x \to  {2}^{  +  } } ( \frac{1}{x - 2}  +  \frac{x - 7}{x \times (x + 3) - 2(x + 3)} )

\lim_{x \to  {2}^{  +  } } ( \frac{1}{x - 2}  +  \frac{x - 7}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{  +  } } ( \frac{x + 3 + x - 7}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{  +  } } ( \frac{2x + 3 - 7}{(x + 3) \times (x  - 2)} )

\lim_{x \to  {2}^{  +  } } ( \frac{2x - 4}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{  +  } } ( \frac{2(x - 2)}{(x + 3) \times (x - 2)} )

\lim_{x \to  {2}^{  +  } } ( \frac{2}{x + 3} )

 \frac{2}{2 + 3}

\boxed{ \frac{2}{5} }

Agora vamos juntá-las:

 \frac{ \frac{ \frac{2}{5} }{2} }{5}

Como os limites são inguais, consequentemente vai ficar assim:

  \frac{2}{5}

\boxed{0,4}

ATT:ARMANDO

Perguntas interessantes