qual o resposta da conta (x-3) (x+4) - 10 = (1-x) (x+2)
Soluções para a tarefa
Respondido por
0
Aplicar a distributiva:
(x-3) (x+4) - 10 = (1-x) (x+2)
x² + 4x - 3x - 12 - 10 = x + 2 - x² - 2x
x² + x - 22 = -x² + x - 2x + 2
x² + x - 22 = - x² - x + 2
x² + x² + x + x - 22 - 2 = 0
2x² + 2x - 24 = 0
a = 2
b = 2
c = -24
Δ = b² -4 .a . c
Δ = 2² -4 . 2 . (-24)
Δ = 4 - 8 . (-24)
Δ = 4 + 192
Δ = 196
![\mathtt{\dfrac{-b+-~\sqrt{\Delta}}{2~.~a}~~=~~\dfrac{-2+-~\sqrt{196}}{2~~.~2}~~=~~\dfrac{-2+-~14}{4}} \\ \\ \\ \mathtt{x = \dfrac{-2+14}{4}~~=~~\dfrac{12}{4}~~=~~3} \\ \\ \\ \mathtt{x'' = \dfrac{-2-14}{4}~~=~~-\dfrac{16}{4}~~=~~-4} \mathtt{\dfrac{-b+-~\sqrt{\Delta}}{2~.~a}~~=~~\dfrac{-2+-~\sqrt{196}}{2~~.~2}~~=~~\dfrac{-2+-~14}{4}} \\ \\ \\ \mathtt{x = \dfrac{-2+14}{4}~~=~~\dfrac{12}{4}~~=~~3} \\ \\ \\ \mathtt{x'' = \dfrac{-2-14}{4}~~=~~-\dfrac{16}{4}~~=~~-4}](https://tex.z-dn.net/?f=%5Cmathtt%7B%5Cdfrac%7B-b%2B-%7E%5Csqrt%7B%5CDelta%7D%7D%7B2%7E.%7Ea%7D%7E%7E%3D%7E%7E%5Cdfrac%7B-2%2B-%7E%5Csqrt%7B196%7D%7D%7B2%7E%7E.%7E2%7D%7E%7E%3D%7E%7E%5Cdfrac%7B-2%2B-%7E14%7D%7B4%7D%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathtt%7Bx+%3D+%5Cdfrac%7B-2%2B14%7D%7B4%7D%7E%7E%3D%7E%7E%5Cdfrac%7B12%7D%7B4%7D%7E%7E%3D%7E%7E3%7D+%5C%5C+%5C%5C+%5C%5C+%5Cmathtt%7Bx%27%27+%3D+%5Cdfrac%7B-2-14%7D%7B4%7D%7E%7E%3D%7E%7E-%5Cdfrac%7B16%7D%7B4%7D%7E%7E%3D%7E%7E-4%7D)
Resposta: S{-4 e 3}
(x-3) (x+4) - 10 = (1-x) (x+2)
x² + 4x - 3x - 12 - 10 = x + 2 - x² - 2x
x² + x - 22 = -x² + x - 2x + 2
x² + x - 22 = - x² - x + 2
x² + x² + x + x - 22 - 2 = 0
2x² + 2x - 24 = 0
a = 2
b = 2
c = -24
Δ = b² -4 .a . c
Δ = 2² -4 . 2 . (-24)
Δ = 4 - 8 . (-24)
Δ = 4 + 192
Δ = 196
Resposta: S{-4 e 3}
Perguntas interessantes