Qual o princípio de ordenação do Bubble Sort?a.Cria um subvetor à esquerda ordenado e insere um elemento de cada vez já na posição correta.b.Compara todos os elementos com o primeiro, trocando de posição se a ordem estiver correta e jogando os menores (ou maiores) para o início do vetor.c.Compara elementos consecutivos (vizinhos) jogando os valores maiores (ou menores) para o final do vetor.d.Usa recursividade para a ordenação dividindo o vetor em 2 partes até que o subvetor só tenha um elemento (solução trivial).e.Insere todos os elementos em um vetor auxiliar e retira o maior de todos e coloca em um subvetor à direita, escolhendo sempre os maiores valores.
Soluções para a tarefa
Com referência à pergunta Qual é o princípio de classificação do Bubble Sort, A alternativa correta:
C). Compara elementos consecutivos (vizinhos) jogando os valores maiores (ou menores) para o final do vetor
O que é classificação de bolhas?
É um algoritmo de ordenação. Ele funciona verificando cada ‘item’ da lista para ser classificado com o próximo, trocando-os se estiverem na ordem errada. É necessário percorrer toda a lista várias vezes até que não sejam necessárias mais trocas, o que significa que a lista está ordenada.
Um exemplo passo a passo
Pegue uma matriz de números "5 1 4 2 8" e ordene a matriz do número mais baixo para o número mais alto usando a classificação de bolhas. A cada passo, os itens escritos em negrito são comparados. Serão necessários três passes;
- primeira passagem
(5 1 4 2 8) → (1 5 4 2 8), aqui, o algoritmo compara os dois primeiros elementos e os troca de 5> 1.
(1 5 4 2 8) → (1 4 5 2 8), Trocar de 5 > 4
(1 4 5 2 8) → (1 4 2 5 8), Trocar de 5> 2
(1 4 2 5 8) → (1 4 2 5 8), agora, como esses elementos já estão em ordem (8> 5), o algoritmo não os troca.
- Segundo passo
(1 4 2 5 8) → (1 4 2 5 8)
(1 4 2 5 8) → (1 2 4 5 8), Trocar de 4 > 2
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
Agora, o arrasar já está ordenado, mas o algoritmo não sabe se está completo. O algoritmo precisa de uma passagem completa adicional sem nenhuma alteração para saber que está ordenado.
- Terceira passagem
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
(1 2 4 5 8) → (1 2 4 5 8)
Saiba mais sobre Bubble Sort em: https://brainly.com.br/tarefa/51741934
#SPJ2