Qual o preímetro do quadrado que tem a diagonal igual a 3 m?
Soluções para a tarefa
d=l√2
d=3
3=l√2
l=3/√2
l=3√2/2
este é o lado do quadrado. seu perímetro
P=4(3√2/2) pois se trata de 4 lados
[P=6√2 m]
Vamos por partes... ;-)
Perímetro é a soma dos lados.
Um quadrado tem quatro lados iguais.
Portanto, o perímetro de um quadrado é quatro vezes o comprimento de qualquer um de seus lados.
Como calcular o lado de um quadrado quando a gente só sabe o valor da sua diagonal?
Bem...
A diagonal de um quadrado o divide em dois triângulos retângulos.
Cada um deste triângulos retângulos tem como catetos os lados do quadrado e como hipotenusa a diagonal.
Sempre que alguém fala em triângulo retângulo eu me lembro do teorema de Pitágoras.
Lembra dele?
O teorema de Pitágoras diz que:
"O quadrado da hipotenusa é igual à soma dos quadrados dos catetos."
ou seja:
= +
onde:
a é o valor da hipotenusa
b e c são os catetos.
OK. Então vamos usar este tal "teorema de Pitágoras" para encontrar o valor do lado do quadrado (qualquer um dos catetos). Depois, a gente multiplica o valor encontrado por 4, para achar o perímetro. (Que é o que está sendo pedido!)
Sacou?
Vamos lá:
= +
a = 3 m
b = c = x (lado do quadrado)
= +
x =
Se cada lado do quadrado vale o seu perímetro é quatro vezes isto.
P = 4 . x = 4 .
Resposta: 4 .
:-)