Qual o milésimo número ímpar positivo?
Soluções para a tarefa
Explicação passo a passo:
Temos a PA: ( 1, 3, 5, 7, 9, ... ) onde o primeiro termo a1= 1, a razão r = 2 e queremos calcular o milésimo termo a1000. Nestas condições, n = 1000 e poderemos escrever:
a1000 = a1 + (1000 - 1).2 = 1 + 999.2 = 1 + 1998 = 1999.
Portanto, 1999 é o milésimo número ímpar.
Bons estudos :3
Resposta:
BONS ESTUDOS
Explicação passo a passo:
Introdução
Chama-se sequência ou sucessão numérica, a qualquer conjunto ordenado de números reais ou complexos. Assim, por exemplo, o conjunto ordenado A = ( 3, 5, 7, 9, 11, ... , 35) é uma sequência cujo primeiro termo é 3, o segundo termo é 5, o terceiro termo é 7 e assim sucessivamente.
Uma sequência pode ser finita ou infinita.
O exemplo dado acima é de uma sequência finita.
Já a sequência P = (0, 2, 4, 6, 8, ... ) é infinita.
Uma sequência numérica pode ser representada genericamente na forma:
(a1, a2, a3, ... , ak, ... , an, ...) onde a1 é o primeiro termo, a2 é o segundo termo, ... , ak é o k-ésimo termo, ... , an é o n-ésimo termo. (Neste caso, k < n).
Por exemplo, na sequência Y = ( 2, 6, 18, 54, 162, 486, ... ) podemos dizer que a3 = 18, a5 = 162, etc.
São de particular interesse, as sequências cujos termos obedecem a uma lei de formação, ou seja é possível escrever uma relação matemática entre eles.
Assim, na sequência Y acima, podemos observar que cada termo a partir do segundo é igual ao anterior multiplicado por 3.
A lei de formação ou seja a expressão matemática que relaciona entre si os termos da sequência, é denominada termo geral.
Considere por exemplo a sequência S cujo termo geral seja dado por an = 3n + 5, onde n é um número natural não nulo.
Observe que atribuindo-se valores para n, obteremos o termo an (n - ésimo termo) correspondente.
Assim por exemplo, para n = 20, teremos
an = 3.20 + 5 = 65, e portanto o vigésimo termo dessa sequência (a20) é igual a 65.
Prosseguindo com esse raciocínio, podemos escrever toda a sequência S que seria:
S = ( 8, 11, 14, 17, 20, ... ).
Dado o termo geral de uma sequência, é sempre fácil determiná-la.
Seja por exemplo a sequência de termo geral an = n2 + 4n + 10, para n inteiro e positivo.
Nestas condições, podemos concluir que a sequência poderá ser escrita como:
(15, 22, 31, 42, 55, 70, ... ).
Por exemplo:
a6 = 70 porque a6 = 62 + 4.6 + 10 = 36 + 24 + 10 = 70.
Conceito de Progressão Aritmética - PA
Chama-se Progressão Aritmética – PA – à toda sequência numérica cujos termos a partir do segundo, são iguais ao anterior somado com um valor constante denominado razão.
Exemplos:
A = ( 1, 5, 9, 13, 17, 21, ... ) razão = 4 (PA crescente)
B = ( 3, 12, 21, 30, 39, 48, ... ) razão = 9 (PA crescente)
C = ( 5, 5, 5, 5, 5, 5, 5, ... ) razão = 0 (PA constante)
D = ( 100, 90, 80, 70, 60, 50, ... ) razão = -10 ( PA decrescente)
Termo Geral de uma Progressão Aritmética
Seja a PA genérica (a1, a2, a3, ... , an, ...) de razão r.
De acordo com a definição podemos escrever:
a2 = a1 + 1.r
a3 = a2 + r = (a1 + r) + r = a1 + 2r
a4 = a3 + r = (a1 + 2r) + r = a1 + 3r
Podemos inferir (deduzir) das igualdades acima que: an = a1 + (n – 1) . r
A expressão an = a1 + (n – 1) . r é denominada termo geral da PA.
Nesta fórmula, temos que an é o termo de ordem n (n-ésimo termo) , r é a razão e a1 é o primeiro termo da Progressão Aritmética – PA.
Exemplos:
Qual o milésimo número ímpar positivo?
Temos a PA: ( 1, 3, 5, 7, 9, ... ) onde o primeiro termo a1= 1, a razão r = 2 e queremos calcular o milésimo termo a1000. Nestas condições, n = 1000 e poderemos escrever:
a1000 = a1 + (1000 - 1).2 = 1 + 999.2 = 1 + 1998 = 1999.
Portanto, 1999 é o milésimo número ímpar.
Qual o número de termos da PA: ( 100, 98, 96, ... , 22) ?
Temos a1 = 100, r = 98 -100 = - 2 e an = 22 e desejamos calcular n.
Substituindo na fórmula do termo geral, fica: 22 = 100 + (n - 1). (- 2) ;
logo, 22 - 100 = - 2n + 2 e, 22 - 100 - 2 = - 2n de onde conclui-se que - 80 = - 2n ,
de onde vem n = 40.
Portanto, a PA possui 40 termos.